INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES

Available online at www.ijpcbs.com

Research Article

SYNTHESIS, SCREENING AND QSAR ANALYSIS OF CHALCONE

DERIVATIVES AS POTENTIAL ANTI BACTERIAL AGENTS

Narendra Velagapudi^{1*}, Nisha Sharma² and Raviteja Bandla³

¹Departmrent of Pharmacy, N.R.I.College of Pharmacy, Vijayawada, Andhra Pradesh, India. ²C.S.J.M.University, Kanpur, Uttar Pradesh, India. ³ M.A.M.College of Pharmacy, Narasaraopet, Andhra Pradesh, India.

ABSTRACT

Chalcones are important starting materials for the synthesis of varies heterocyclic compounds. Most of them are widely used in pharmaceuticals. Keeping this in mind new chalcones are synthesized by conventional method and the structures were confirmed by spectral evidence. Synthesized compounds were screened for their antibacterial activity the molecules were screened for their structural activity relationships by atom based 3D QSAR studies.

Keywords: Chalcones, QSAR, antibacterial activity.

INTRODUCTION

Chalcones, a group of compounds with two aromatic rings connected by a keto-vinyl chain, constitute an important class of naturally occurring flavonoids exhibiting a wide spectrum of biological activities. The presence of a reactive α , β -unsaturated keto functional group is partly responsible for their activity.

General procedure for the synthesis of chalcones

A mixture of 2,4-Dichloroacetophenone (0.001 mole) and the appropriate aryl aldehyde (0.001 mole) was stirred in ethanol (7.5 mL) and to it aqueous solution of KOH (50%, 7.5 mL) was added. The mixture was kept for 24 h and it was acidified with 1:1 mixture of hydrochloric acid and water, then it was filtered under vacuum and the product was washed with water. Characterization of chalcones were given in table1-3.

General scheme of reaction

Chalcone derivative

		Molecular	Relative	Melting	Vield
Compound	R	Formula	Mass (RMM)	Point (°C)	%
B1	-CH ₂		(10112)		
		$C_{16}H_{12}Cl_2O$	291	134-137	89
B ₂		C ₁₅ H ₉ FCl ₂ O	294	87-90	86
B ₃		C15H9Cl3O	310	121-124	76
B 4		C15H9Cl3O	310	130-133	82
B 5	F F F	$C_{15}H_8F_2Cl_2O$	312	110-113	73
\mathbf{B}_6		C15H8Cl4O	344	93-96	86
B 7		$C_{15}H_8Cl_3NO_3$	356	131-134	77
\mathbf{B}_8		C15H9F2NO3	322	114-117	83
B 9		$C_{15}H_9Cl_2NO_3$	322	122-125	82
B10	ОН	$C_{15}H_{10}Cl_2O_2$	293	132-135	92
B11	NO ₂ 	$C_{16}H_{11}Cl_2NO_3$	336	126-129	81
B ₁₂	OCH ₃ ————————————————————————————————————	C ₁₈ H ₁₆ Cl ₂ O ₄	367	110-111	82
B ₁₃		$C_{16}H_{10}Cl_2O_3$	321	148-151	72
B14	CH ₃	C ₁₉ H ₁₄ Cl ₂ N ₂ O	357	112-115	73
B15	O Br	C13H7Cl2BrO2	346	126-129	62

I ADIE I, FIIVSILAI LIIAI ALLEI IZALIUII UALA UI LIIAILUILES I D1-D251
--

B ₁₆		C17H15Cl2NO	320	152-155	81
B ₁₇	ОСН3	$C_{16}H_{12}Cl_2O_3$	323	99-102	85
B ₁₈		C14H9Cl2NO	278	91-94	84
B 19		C14H9Cl2NO	278	78-81	86
B ₂₀		C14H9Cl2NO	278	96-99	78
B ₂₁	N H	C13H9Cl2NO	266	101-104	69
B ₂₂	s	$C_{13}H_8Cl_2OS$	283	106-109	79
B ₂₃		C23H14Cl2O	377	108-111	76
B ₂₄	——————————————————————————————————————	$C_{15}H_{10}Cl_2O_2$	293	91-94	77
B ₂₅		$C_{15}H_{10}Cl_2O$	277	66-69	82

Table 2: IR (KBr disc) spectral data of chalcones

Compound	Position of absoption band (cm ⁻¹)
B ₁	1655 (C=O), 1602 (C=C of Ar), 1505(CH=CH), 825 (C-Cl)
B ₂	1664 (C=O), 1580 (C=C of Ar), 1524 (CH=CH), 828 (C-Cl)
B ₃	1653 (C=O), 1585 (C=C of Ar), 1505 (CH=CH), 835 (C-Cl)
B_4	1652 (C=O), 1583 (C=C of Ar), 1502 (CH=CH), 833 (C-Cl)
B 5	1655 (C=O), 1581 (C=C of Ar), 1510 (CH=CH), 825 (C-Cl), 926 (C-F)
B ₆	1663 (C=O), 1578 (C=C of Ar), 1506 (CH=CH), 833 (C-Cl)
B ₇	1658 (C=O), 1603 (C=C of Ar), 1515 (CH=CH), 824 (C-Cl),1525 (N=O, asymmetric), 1348 (N=O, symmetric)
B ₈	1655 (C=O), 1605 (C=C of Ar), 1508 (CH=CH), 1533 (N=O, asymmetric), 1345 (N=O, symmetric), 829 (C-Cl)
B 9	1652 (C=O), 1610 (C=C of Ar), 1502 (CH=CH), 1541 (N=O, asymmetric), 1346 (N=O, symmetric), 823 (C-Cl)
B ₁₀	3520 (0-H), 1648 (C=O), 1612 (C=C of Ar), 1505 (CH=CH), 823 (C-Cl)
B ₁₁	1655 (C=O), 1605 (C=C of Ar), 1500 (CH=CH), 1545 (N=O, asymmetric), 1343 (N=O, symmetric), 822 (C-Cl)
B ₁₂	1652 (C=O), 1585 (C=C of Ar), 1462 (CH=CH), 1127 (-0-CH ₃), 827 (C-Cl)
B ₁₃	1643 (C=O), 1574 (C=C of Ar), 1500 (CH=CH), 1240 (O-CH ₂ -O), 829 (C-Cl)
B ₁₄	1663 (C=O), 1610 (C=N), 1588 (C=C of Ar), 1510 (CH=CH), 1391 (C-N), 821 (C-Cl)
B ₁₅	1652 (C=O), 1585 (C=C of Ar), 1503 (CH=CH), 829 (C-Cl)
B ₁₆	1650 (C=O), 1586 (C=C of Ar),1505 (CH=CH), 1178 (-N(CH ₃) ₂), 821 (C-Cl)
B ₁₇	3450 (O-H), 1648 (C=O), 1606 (C=C of Ar), 1510 (CH=CH), 1225 (-OCH ₃), 825 (C-Cl)
B ₁₈	1653 (C=O), 1605 (C=C of Ar), 1595 (C=N), 1508 (CH=CH), 1385 (C-N), 822 (C-Cl)
B 19	1645 (C=O), 1603 (C=C of Ar), 1590 (C=N), 1502 (CH=CH), 1370 (C-N), 923 (C-Cl)
B ₂₀	1650 (C=0), 1605 (C=C of Ar), 1581 (C=N), 1505 (CH=CH), 1373 (C-N), 829 (C-Cl)
B ₂₁	1652 (C=O), 1605 (C=C of Ar), 1588 (C=N), 1506 (CH=CH), 1375 (C-N), 821 (C-Cl)
B ₂₂	1655 (C=O), 1610 (C=C of Ar), 1505 (CH=CH), 624 (C-S), 823 (C-Cl)
B ₂₃	1658 (C=O), 1605 (C=C of Ar), 1503 (CH=CH), 823 (C-Cl)
B ₂₄	3460 (0-H), 1648 (C=0), 1606 (C=C of Ar), 1505 (CH=CH), 824 (C-Cl)
B 25	1650 (C=O), 1605 (C=C of Ar), 1502 (CH=CH), 829 (C-Cl)

	Table 5 It Wilk spectral data of chalcones
Compound	Chemical shift (δ) in ppm
B ₁	2.40 (3H, s, Ar-CH ₃), 7.23 (1H, d, J = 17 Hz, -CO-CH=), 7.73 (1H, d, J =17 Hz, =CH-Ar), 7.20-7.78 (7H, Ar-H)
B ₂	7.15 (1H, d, J = 17 Hz, -CO-CH=), 7.62 (1H, d, J =17 Hz, =CH-Ar), 7.05-7.71 (7H, Ar-H)
B ₃	7.45 (1H, d, J = 17 Hz, -CO-CH=), 7.82 (1H, d, J =17 Hz, =CH-Ar), 7.38-8.20 (7H, Ar-H)
B_4	7.43 (1H, d, J = 17 Hz, -CO-CH=), 7.80 (1H, d, J =17 Hz, =CH-Ar), 7.36-8.21 (7H, Ar-H)
B 5	7.40 (1H, d, J = 17 Hz, -CO-CH=), 7.73 (1H, d, J =17 Hz, =CH-Ar), 7.15-8.10 (6H, Ar-H)
\mathbf{B}_{6}	7.68 (1H, d, J = 17 Hz, -CO-CH=), 7.85 (1H, d, J =17 Hz, =CH-Ar), 7.42-8.20 (6H, Ar-H)
B ₇	7.49 (1H, d, <i>J</i> = 17 Hz, -CO-CH=), 7.65 (1H, d, <i>J</i> =17 Hz, =CH-Ar), 7.12-8.60 (6H, Ar-H)
\mathbf{B}_8	7.40 (1H, d, J = 17 Hz, -CO-CH=), 7.62 (1H, d, J =17 Hz, =CH-Ar), 7.20-8.55 (7H, Ar-H)
B 9	7.43 (1H, d, J = 17 Hz, -CO-CH=), 7.68 (1H, d, J =17 Hz, =CH-Ar), 7.21-8.59 (7H, Ar-H)
B ₁₀	7.38 (1H, d, J = 17 Hz, -CO-CH=), 7.52 (1H, d, J = 17 Hz, =CH-Ar), 6.89 (1H, s, Ar-OH), 7.18-7.79 (7H, Ar-H)
B ₁₁	2.50 (3H. s, Ar-CH ₃), 7.40 (1H, d, J = 17 Hz, -CO-CH=), 7.65 (1H, d, J = 17 Hz, =CH-Ar), 7.15-8.53 (6H, Ar-H)
B ₁₂	7.15 (1H, d, J = 17 Hz, -CO-CH=), 7.64 (1H, d, J = 17 Hz, =CH-Ar), 7.12-7.58 (5H, Ar-H), 3.78 (3H,s,Ar-OCH ₃),
	3.88 (6H,s,2x Ar-OCH ₃)
B ₁₃	6.10 (2H,s,-0-CH ₂ 0-), 6.88 (1H, d, J = 17 Hz, -C0-CH=), 7.69 (1H, d, J = 17 Hz, =CH-Ar), 7.10-7.29 (6H, Ar-H)
B ₁₄	2.45 (3H, s, Ar-CH ₃), 6.85 (1H, d, <i>J</i> = 17 Hz, -CO-CH=), 7.65 (1H, d, <i>J</i> = 17 Hz, =CH-Ar), 6.58-7.90 (8H, Ar-H)
B ₁₅	7.23 (1H, d, <i>J</i> = 17 Hz, -CO-CH=), 7.71 (1H, d, <i>J</i> =17 Hz, =CH-Ar), 7.18-7.95 (5H, Ar-H)
B ₁₆	3.10 (6H,s,-N(CH ₃) ₂ , 6.88 (1H, d, J = 17 Hz, -CO-CH=), 7.75 (1H, d, J = 17 Hz, =CH-Ar), 6.65-7.90 (7H, Ar-H)
B 17	7.21 (1H, d, J = 17 Hz, -CO-CH=), 7.68 (1H, d, J = 17 Hz, =CH-Ar), 7.20-7.93 (6H, Ar-H), 6.75 (1H.s, Ar-OH), 3.82
	(3H,s,Ar-OCH ₃)
B ₁₈	7.15 (1H, d, J = 17 Hz, -CO-CH=), 7.65 (1H, d, J =17 Hz, =CH-Ar), 6.30-8.15 (7H, Ar-H)
B 19	7.18 (1H, d, J = 17 Hz, -CO-CH=), 7.70 (1H, d, J =17 Hz, =CH-Ar), 7.12-8.20 (7H, Ar-H)
B ₂₀	7.15 (1H, d, <i>J</i> = 17 Hz, -CO-CH=), 7.75 (1H, d, <i>J</i> =17 Hz, =CH-Ar), 7.20-8.15 (7H, Ar-H)
B ₂₁	7.10 (1H, d, <i>J</i> = 17 Hz, -CO-CH=), 7.70 (1H, d, <i>J</i> =17 Hz, =CH-Ar), 6.35-7.90 (7H, Ar-H)
B ₂₂	7.12 (1H, d, <i>J</i> = 17 Hz, -CO-CH=), 7.70 (1H, d, <i>J</i> =17 Hz, =CH-Ar), 6.62-8.10 (6H, Ar-H)
B ₂₃	7.35 (1H, d, J = 17 Hz, -C0-CH=), 7.60 (1H, d, J =17 Hz, =CH-Ar), 7.20-8.90 (12H, Ar-H)
B ₂₄	7.28 (1H, d, J = 17 Hz, -C0-CH=), 7.59 (1H, d, J =17 Hz, =CH-Ar), 6.85 (1H,s,Ar-OH), 7.21-7.89 (7H, Ar-H)
B ₂₅	7.21 (1H, d, J = 17 Hz, -CO-CH=), 7.62 (1H, d, J =17 Hz, =CH-Ar), 7.11-7.90 (8H, Ar-H)

Table 3: ¹H NMR spectral data of chalcones

BIOLOGICAL EVALUATION

Antibacterial activity

The antibacterial activity of the chalcones (B_1 to B_{25}) was assessed by determining the MIC, which is defined as the lowest concentration of the compound that completely inhibited the growth of each strain after overnight incubation. MIC was determined using serial tube dilution technique. In this technique the tubes of broth

medium containing graded doses of compounds were inoculated with the test organisms. After suitable incubation, growth occurred in those tubes where the concentration of the compound was below the inhibitory level and the culture become turbid. No growth was noticed above the inhibitory level and the tubes remained clear results were given in table-4.

	(compounds b ₁ to b ₁₂). (Expressed as Mic m µg/mL)							
Compound	R	B.subtilis	S.aureus	E.coli	P.vulgaris			
B 1	4"-methylphenyl	128	128	64	64			
\mathbf{B}_2	4"-fluorophenyl	64	128	64	128			
B ₃	4"-chlorophenyl	64	128	128	64			
B_4	2"-chlorophenyl	64	128	128	64			
B 5	2",4"-difluorophenyl	32	64	32	32			
B_6	2",4-dichlorophenyl	64	64	32	128			
B ₇	2"-chloro-5"-nitrophenyl	32	128	128	128			
B ₈	3"-nitrophenyl	128	256	128	256			
B 9	4"-nitrophenyl	128	256	128	128			
B10	3"-hydroxyphenyl	256	256	128	256			
B ₁₁	3"-nitro-4"-methylphenyl	128	64	128	128			
B ₁₂	3",4",5"-trimethoxyphenyl	64	64	64	32			
B ₁₃	3",4"-methylendioxyphenyl	256	128	256	128			
B ₁₄	⁴ 1"-phenyl- 3"methylpyrazole-4"-yl		128	128	256			
B 15	5"-bromofuran-2"-yl	64	64	32	128			
B ₁₆	4"-dimethylaminophenyl	64	128	64	64			
B 17	B ₁₇ 3"-methoxy-4"- hydroxyphenyl		128	128	128			
B ₁₈	2"-pyridinyl	128	256	128	256			
B ₁₉	3"-pyridinyl	128	256	256	256			
B ₂₀	4"-pyridinyl	128	128	128	128			
B ₂₁	2"-pyrrolyl	256	256	64	64			

Table 4: Antibacterial activity of chalcones (compounds B₁ to B₁₂):(Expressed as MIC in µg/mL)

B ₂₂	2"-thienyl	128	64	128	128
B ₂₃	9"-anthracenyl	256	128	128	256
B ₂₄	4"-hydroxyphenyl	264	128	64	64
B ₂₅	Phenyl	256	256	256	256
Standard (Ampicillin)		< 1	< 1	< 1	< 1

RESULTS AND DISCUSSION

From the above results it is evident that all the chalcones synthesized, showed antibacterial activity with different MIC values against the tested organisms, but not comparable with that of the standard. Among the compounds tested, B_5 with difluorophenyl moiety was found to be the most potent against *B.subtilis, E.coli* and *P.vulgaris* having a MIC value of 32 µg/mL in each case. The chalcones, B_6 having a dichlorophenyl substitution, B_7 having 2-chloro-5-nitrophenyl substitution and B_{15} having bromofuran substitution were also found to be equipotent with a MIC value of 32 µg/mL against *E.coli*, *B.subtilis* and *E.coli* respectively.

Atom based 3D-QSAR model for antibacterial activity of chalcones against *B.subtilis*

In atom based 3D-QSAR analysis of chalcones, the Correlation Coefficient $(R^2) = 0.7922$, Cross validation Coefficient $(Q^2) = 0.4647$ and Standard Deviation (S.D) = 0.1406 were established. From the it was found that the aromatic ring substitution with hydrogen bond donor or electron withdrawing group or hydrophobic group and a conjugated carbonyl system essential for increasing the antibacterial activity, , as such regions showed blue cubes characteristic of positive effect on the antibacterial activity. Results of the statistical analysis are shown in the following tables and figures.

Table 5: Experimental and predicted MIC (μg/mL) values of training set and test set molecules based on atom based 3D-OSAR model (Antibacterial activity)

Compound code	<i>B.subtilis</i> MIC(µg/mL)	Experimental -log(MIC)	Predicted -log(MIC) (Training set)	Predicted -log(MIC) (Test set)
B_1	128	-2.10721	-1.99786	
B ₂	64	-1.80618		-1.8522
B ₃	64	-1.80618	-1.78244	
B_4	64	-1.80618	-1.83539	
B ₅	32	-1.50515	-1.77385	
B ₆	64	-1.80618		-1.61438
B ₇	32	-1.50515	-1.4236	
B_8	128	-2.10721	-2.13336	
B_9	128	-2.10721	-2.08065	
B10	256	-2.40824	-2.43568	
B11	128	-2.10721		-2.11693
B ₁₂	64	-1.80618	-1.84143	
B ₁₃	256	-2.40824		-2.24238
B14	128	-2.10721	-2.20928	
B ₁₅	64	-1.80618	-1.87677	
B ₁₆	64	-1.80618	-1.79833	
B ₁₇	128	-2.10721	-2.18291	
B ₁₈	128	-2.10721	-2.16989	
B19	128	-2.10721	-2.19334	
B ₂₀	128	-2.10721	-2.123	
B ₂₁	256	-2.40824	-2.33018	
B ₂₂	128	-2.10721	-2.0912	
B ₂₃	256	-2.40824	-2.34953	
B ₂₄	264	-2.4216		-2.05839
B ₂₅	256	-2.40824	-2.01035	

|--|

PLS Factors	SD	R ²	F	Р	RMSE	Q-squared	Pearson-R
4	0.1406	0.7922	14.3	5.28e-05	0.2	0.4647	0.8391

Fig. 1: Atom based 3D-QSAR Model of chalcones along with alignment of structures (Blue cubes indicate favorable regions while red cubes indicate unfavorable region for the activity) against *B.subtilis.*

Fig. 2: Atom based 3D QSAR model visualized in the context of highest active compound B7 against *B.subtilis*.

Fig. 3: Atom based 3D QSAR model visualized in the context of lowest active compound B₂₅ against *B.subtilis*.

Atom based 3D-QSAR model for antibacterial activity of chalcones against *S.aureus*

In atom based 3D-QSAR analysis of chalcones, the Correlation Coefficient $(R^2) = 0.9031$, Cross validation Coefficient $(Q^2) = 0.4858$ and Standard Deviation (S.D) = 0.0765 (Table35) were established. From the results shown in figures. it was found that the aromatic ring substitution with hydrogen bond donor or electron withdrawing group or hydrophobic group and a conjugated carbonyl system essential for increasing the antibacterial activity, as such regions showed blue cubes characteristic of positive effect on the antibacterial activity. Results of the statistical analysis are shown in the following tables and figures.

Compound code	<i>S.aureus</i> MIC(μg/mL)	Experimental -log(MIC)	Predicted -log(MIC) (Training set)	Predicted -log(MIC) (Test set)
B1	128	-2.10721	-2.03134	
B_2	128	-2.10721	-2.02153	
B ₃	128	-2.10721	-2.03373	
B4	128	-2.10721	-2.03405	
B ₅	64	-1.80618	-1.97364	
B_6	64	-1.80618		-1.94537
B7	128	-2.10721		-2.10334
B_8	256	-2.40824	-2.49357	
B9	256	-2.40824	-2.38831	
B10	256	-2.40824		-2.25866
B11	64	-1.80618	-1.85607	
B ₁₂	64	-1.80618	-1.80874	
B ₁₃	128	-2.10721	-2.12386	
B14	128	-2.10721	-2.09377	
B ₁₅	64	-1.80618	-1.92587	
B ₁₆	128	-2.10721	-2.06055	
B ₁₇	128	-2.10721		-2.03624
B ₁₈	256	-2.40824	-2.39162	
B19	256	-2.40824	-2.37156	
B ₂₀	128	-2.10721	-2.15377	
B ₂₁	256	-2.40824	-2.38607	
B ₂₂	64	-1.80618	-1.74819	
B ₂₃	128	-2.10721	-2.1409	
B ₂₄	128	-2.10721	-2.10705	
B ₂₅	256	-2.40824		-2.11896

Table 7: Experimental and predicted MIC (μg/mL) values of training set and test set molecules based on atom based 3D-OSAR model (Antibacterial activity)

Table 8: Summary of atom based 3D QSAR results

PLS Factors	SD	R ²	F	Р	RMSE	Q-squared	Pearson-R
4	0.0765	0.9031	35	1.94e-07	0.16	0.4858	0.8799

Fig. 4: Atom based 3D-QSAR Model of chalcones along with alignment of structures (Blue cubes indicate favorable regions while red cubes indicate unfavorable region for the activity) against *S.aureus.*

Fig. 5: Atom based 3D QSAR model visualized in the context of highest active compound B₆ against *S.aureus*.

Fig. 6: Atom based 3D QSAR model visualized in the context of lowest active compound B₂₅ against *S.aureus*.

DISCUSSION

The structure-activity relationship study based on the above results clearly indicated the importance of electron withdrawing groups in enhancing the antibacterial activity. When more than one such group present on the phenyl ring, a cumulative effect was observed as seen in the case of B₅ and B₆ having difluoro and dichloro substitution respectively. However, compounds with electron releasing substituents as seen in the case of B_{12} and B_{16} also enhanced the activity. Compounds with more number of electron releasing or electron with drawing substituents on the aromatic or heteroaromatic ring at different positions can be synthesized to draw meaningful conclusions with respect to the influence of electronic effects on the antimicrobial activity.

REFERENCES

- 1. Maayan S, Ohad N and Soliman K. Bioorg Med Chem. 2005;13:433.
- 2. Wilson CW. J Asian chem Soc. 1938;61:2303.
- 3. Algar J and Flynn JP. Proc Roy Irish Acad. 1937;42B:1.
- 4. Claisen L and Claparede A Ber. 1881;14:2463.
- 5. Van Kostanekki ST and Szabranki W Ber. 1904;37:2634.
- 6. Datta SC, Murthi VVS and Seshadri TR. Indian JChem. 1971;9:614.
- 7. Reichel L and Muller K Ber. 1941;74:1741.

- 8. Shindo J and Sato S. JPharm Soc Japan. 1928;48:791.
- 9. Mabry TJ, Markham KR and Thomas MB. in : The systematic identification of flavonoids, Springer-Verlag, New York. 1970;227.
- 10. Hegert HL and Kurth EF. J Am Chem Soc. 1953;75:1622.
- 11. Dhar DN and Gupta VN. Indian J Chem. 1971;9:818.
- 12. Mabry TJ, Markham KR and Thomas MB. in : The systematic identification of flavonoids, Springer-Verlag, New York. 1970;267.
- 13. Pelter A, Ward RS and Ian Greg T. J Chem Soc. Perkin Trans. 1976;1:2475.
- 14. Sthothers JB. in: ¹³C NMR Spectroscopy, Academic Press, New York, 1972.
- 15. Hu N, Tu YP, Liu Y, Jiang K and Pan Y. J Org Chem. 2008;73:3369.
- 16. Royane J, Williams DH and Bowie JH. J Amer Chem Soc. 1966;88:4980.
- 17. Van de Sande C, Serum JW and Vandervalle M. Org Mass Spectrometry. 1972;6:1333.
- 18. Grutzmacher HF. Org Mass Spectrom. 1993;28:1375.
- 19. Tai Y, Pei S, Wan J, Cao X and Pan Y. Rapid commun Mass spectrom. 2006;20:994.
- 20. Debattista NB, Devia CM and Pappano NB. Rev Micrebiol. 1998;29:307.
- 21. Kromann H, Nielsen SF, Boesen T, Larsen M and Schonning K. Bioorg Med Chem. 2004;12:3047.