INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES

Available online at www.ijpcbs.com

Research Article

PHYTOCHEMICAL AND ANTI DIARRHOEAL ACTIVITY OF

EXTRACT OF MORINDA CITRIFOLIA

B. Naveen Sai^{1*}, Ch. V. Gopi Chand¹, G. Rama Krishna¹, A. Ravi Kumar²,

A. Jaya Rami Reddy³ and V. Vallabh⁴

¹Department of Pharmaceutical Analysis and Quality Assurance, Bapatla College of Pharmacy, Bapatla - 522 101, Andhra Pradesh, India. ²Department of Pharmacognosy, Bapatla College of Pharmacy, Bapatla - 522 101,

²Department of Pharmacognosy, Bapatia Conege of Pharmacy, Bapatia - 522 101, Andhra Pradesh, India.

³Department of Pharmacology, Vijaya Institute of Pharmaceutical Sciences for Women, Vijayawada - 521 108, Andhra Pradesh, India.

⁴Department of Pharmacology, Vel's College of Pharmacy, Chennai – 600043, Tamil Nadu, India.

ABSTRACT

Diarrhoea is a condition that involves frequent passing of loose or watery stools. According to the Who, approximately 3.5million deaths each year are attributable to diarrhoea. Medicinal plants have been used as traditional remedy for diarrhoea for years long and there is renewed interest from the discovery of novel compounds from plants to fight against diarrhoea that also encourages studies on diarrhoea which include research on traditional herbs. The present study was designed to investigate antidiarrhoeal potential of combined 70% hydro ethanolic extract of Morinda citrifolia. Castor oil introduced diarrhoea in wister rats. Phytochemical screening of the plant extract for their active constituents was also carried out using standard procedures. Oral administration of combined hydro ethanolic extract of Morinda citrifolia significantly, and dose dependently delayed the onset of diarrhoea induced by castor oil and also significantly reduced the number of diarrhoeal episodes and number of animals exhibiting diarrhoea. The results were comparable with standard synthetic antidiarrhoeal drug, loperamide. Phytochemical screening also revealed the presence of alkaloids, tannins, flavonoids, carbohydrates as the major constituents. The results point out the presence of active principles in Morinda citrifolia possessing a promising antidiarrhoeal effect substantiate the use of herb non specific treatment of diarrhoea in folk medicine.

Keywords: Morinda citrifolia, castor oil, anti diarrhoeal activity, phytochemicals.

INTRODUCTION

Diarrhoea is important health problem in India as well as worldwide. More than 5-8 millions of death of infants children under 5 years has been a greatest interest in herbal remedies for the treatment of number of ailments. Indigenious plants such as Andrographis paniculata, cassia auriculata, Holarrhena antidysenterica, cyperus rotundus and others are widely used for the treatment of diarrhoea Morinda citrifolia According to ayurveda the tuber is cooling acrid, galactogue to the bowels, aphrodisiacs: sharpens the appetite and improves the taste useful in eye troubles, burning sensations antidiarrhoeal.

MATERIALS AND METHODS

Preparation of extract: *Morinda citrifolia* roots were collected from different parts of Andhra

Pradesh They were authentified and were dried under shade and then powdered with mechanical grinder macerated with ethanol-water (70:30).After exhaustive extraction the ethanol extracts was made solvent free by distillation under reduced pressure and the resulting semisolid masses were dried to yield a solid-hydro ethanolic extract.

Phytochemical investigation: Phytochemical tests were carried out to find the presence of phytochemical constituents viz; alkaloids, carbohydrates, proteins, flavanoids, glycosides, fats, steroids, triterpenoids and tannins according to the standard procedures.

Animals: Wister albino rats weighing between 150-200g were maintained under standard laboratory condition on 12-day/night cycle with free access to food and water being adlibitum. The animals were acclimatized to laboratory condition prior to experimentation. The animals were drawn at random for the study .All the experiments were performed according to current guidelines for the care of the laboratory animals and the ethical guidelines.

Screening of antodiarrhoeal activity

Castoroil induced diarrhoea before the experimental study; the animals were fasted over night with free access to water. The experimental animals were grouped in to four, each group containing wistar albino rats.

Group1 received vehicle orally served as control **Group2** received combined hydro ethanolic extract of *Morinda citrifolia*

Group4 received loperamide and served as standard

All test preparations and standard drug were administered 1hr prior to castor oil. Each rat was then housed separately in the cages, and observed for diarrhoeal episodes for a period of 4hr. During that number and weight of diarrhoeal faeces were taken after every 1/2 hr using mean diarrhoeal episodes percentage diarrhoea and percentage protection were calculated

Castor oil induced enteropooling

Rats are fasted for 24hrs prior to the experiment then the drugs were administered accordingly as per groupings for 1hr2mii/ rat castor oil is was given orally to the all groups. Two hrs. later threats were sacrificed. Small intestine from pylorus to caecum was isolated there was intestinal content were collected by milking in to graduated tube. Volume was measure in ml

Statically analysis:

Results were calculated by student t test to assess statistical significance and data summarized as mean±SEM

Table 1: Phytochemical screening of hydro ethanolic extract of *Morinda citrifolia*

S. No.	Phytochemical	Result
1	alkaloids	++++
2	carbohydates	++++
3	flavonoids	+++
4	steroids	
5	Triterpenoids	
6	Tannins	++++
7	proteins	_
8	glycoside	++
9	lipids	

Table 2: Screening of Antidiarrhoeal Activity of Extract of Morinda citrifolia				
Castor oil induced diarrhoea				

Group No	Group	Watery diarrhoea no	%of protection	Mean weight of stools
1	Vehicle(1%cmc)	6.20±0.41	00.00	5.71±0.33
2	Ethanolextracts(200mg/kg)	2.8±0.62	57.71	3.40±0.42
3	Ethanolextracts(400mg/kg)	2.00±0.22	67.21	2.50±0.22
4	Loperamide(2mg/kg)	1.3±0.51	78.68	1.72±0.15

Values are expressed as mean±SEM(n=6 animals in each group)

Table 3: Screening of Antidiarrhoeal Activity of Extract of Morinda citrifolia Castor oil induced enteropooling

Group No	Group	volume	%of protection		
1	Vehicle(1%cmc)	7.50±0.13	00.00		
2	Ethanol extracts(200mg/kg)	3.10±0.49	55.56		
3	Ethanol extracts(400mg/kg)	2.20±0.32	68.72		
4	Loperamide(2mg/kg)	1.30±0.24	82.59		
Values are expressed mean $SEM(n-6 animals in each group)$					

Values are expressed mean ±SEM(n=6 animals in each group)

RESULTS AND DISCUSSION

The extract of Morinda citrifolia showed dose dependent inhibition of frequency of defecation as well as reduction in no of wet faeces. However this value significant at 400mg/kg dose. The loperamide as shown significant reduction frequency of defecation and wet faeces. the %inhibition of faecal and small intestinal content with 200 and 400mg/kg doses of combined hydro ethanol extracts results shown in tables .It is well known that ricinoleic acid an active component of castor oil induces changes in mucous permeability, electrolyte transport and intestinal peristalsis leading to hyper secretory of the intestinal mucosa, leading to prostaglandins release which causes an increase in net secretion of water and electrolytes in to the small intestine. ricinoleic acid causes irritation and inflammation bio synthesis delay castor oil induced diarrhoea. The mechanism has been associated with dual effects on gastro intestinal motility as well as on water and electrolyte transport.PGE2 also inhibits the absorption of water and electrolytes. The presence of flavonoids and tannins .Tannins can evoke antidiarrhoeal effect and these substances may precipitate proteins of the electrolytes reduce peristaltic movement and intestinal secretion. The antidiarrhoeal activity of flavonoids has been ascribed to their ability to intestinal motility and hydroelectric secretion which is known to be altered in intestinal condition. invitro and invivo experiments shown the flavonoids are able to inhibit intestinal secretory response induced by prostaglandinE2 in addition to flavonoids possess anti-oxidant properties which are presumed to be responsible for inhibitory effect exerts up on several enzymes include those involved in the arachidonic acid metabolism.

CONCLUSION

The root extract of *Morinda citrifolia* contains tannins, flavonoids which may be able to have

contribution to the anti-diarrhoeal activity. Further research needed to identify the specific constituents responsible for this activity and it may lead to a new hope against this world wide problem.

REFERENCES

- 1. Fernando C, Ramon A and Halley P. Effect of plants used in Mexico to treat gastrointestinal disorders on charcoal gum acacia induced hyperperistalsis in rats. J of Ethnopharmacol. 2010;128:49-51.
- 2. Robert Horn, Alex Perry and Simon Robinson. A simple solution. Time. 2006;42-47.
- 3. Hardman JG and Limbard LE. The Pharmacological Basis of Therapeutics. In Goodman & Gilman's; Tenth edition Newyork: McGraw Hill. 2001;1038.
- 4. Jed WF. Moringa oleifera: Review of the medical evidence for its nutritional, therapeutic and prophylactic properties. Part1. Trees for life. 2005;1(5).
- Ezeamuzie IC, Ambakederimo AW, Shode FO and Ekwevelm SC. Anti-inflammatory effects of *Moringa oleifera* root extract. Int J of pharmacog. 1996;34(3):207-12.
- Bharali R, Tabassum J and Azad MRH. Chemomodulatory effect of *Moringa oleifera*, Lam, on hepatic carcinogen metabolizing enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pac J of Cancer Prev. 2003;4:131-39.
- 7. Pal SK, Mukherjee PK and Saha BP. Studies on the antiulcer activity of *Moringa oleifera* leaf extract on gastric ulcer models in rats. Phytotherapy Res. 1995;9:463-65.
- 8. Havagiray RC, Ramesh C and Sadhna K. Studies on anti-diarrheal activity of *Calotropis gantea* R.BR. in experimental animals, J Pharm Pharmaceut Sci. 2004;7(1):70-75.