INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES

Available online atwww.ijpcbs.com

Review Article

MALE FERTILITY REGULATION WITH PLANT PRODUCTS: A REVIEW

Meerwal P and Jain GC*

Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur-302004, Rajasthan, India.

ABSTRACT

Population explosion is one of the greatest problems all over the world especially in developing countries with its inevitable consequences on economic development, public health and environment. Therefore, there is pressing need for control of fertility by encouraging the couples to participate in family planning programmes. Compared with female contraceptive methods male alternatives are limited including vasectomy and condoms. Prevailing situation demands the development of more contraceptive options for males that will encourage more couples to adopt them. Several potential approaches for fertility control have been investigated over a long period including chemical, hormonal and immunological approaches. However, no suitable method has emerged that is effective, reversible and free from side effects. Medicinal plants provide an alternative offer for development of male contraceptives. Numerous herbs have been used historically to reduce fertility in both male and females. The research on medicinal plants for the search of male antifertility agent is being intensified because of their lesser side effects, ready availability and reduced cost. The present review includes a brief account of research reports on medicinal plants with male antifertility activity published between the years 2000 to present. This study provides an information on botanical name, family, parts used, extract used, dose, duration and their possible male antifertility effects in various animals.

Keywords: Antifertility, Antispermatogenic, Medicinal plants, Sperm quality, Testosterone.

INTRODUCTION

Population explosion is one of the greatest problems all over the world with its inevitable consequences on economic development, human health and environment. High fertility rate and rapid decline in death rates or mortality rate and immigration from neighboring countries are considered as the determining factor for population growth.1A large number of pregnancies are unintended and attributed to a failure to use contraceptives due to restricted choices as well as access to available methods or method failure⁴. Prevailing situation demand the development of more new contraceptive options both for male and female to encourage more couples to adopt them^{2, 3}.

Despite the significant advancement in contraceptive options for women, the choice for male contraceptive is restricted to either condom

or vasectomy. However, despite the limited options the use of male based contraceptive methods account for approximately 14% of the contraceptive worldwide⁵. Several potential contraceptive for fertility control in males have been investigated over a long period, including hormonal and chemical, immunological approaches^{2, 6}. However, yet no suitable reversible method has emerged that is highly effective and free from side effects7,8. Concern over the possible adverse effects of the hormonal contraceptives have led to focus

research on medicinal plants for development of male contraceptive agents based on natural products, because of the better cultural acceptability, lesser side effects, easy availability and low cost⁹.Since time immemorial men have relied on plants and their products as source of drugs and therapeutic agents as they are rich in bioactive phytoconstituents. Ancient Indian literature also abounds in information of plants reported to have sterilizing, abortifacient and emmenagogue properties^{10, 11}. The world health organization (WHO) has set up a task force on plant research for fertility regulation with an objective to find new orally active non-steroidal contraceptive compound¹².A large number of plants have been screened during the last few years for their anti-fertility activity in males. Some of these plants have shown antifertility effect by virtue of different mechanism like, antispermatogenic effect¹³⁻¹⁵, alteration in serum testosterone level¹⁶⁻²¹, spermatotoxic effects²², poor sperm quality²³⁻²⁷, alteration in antioxidant defense mechanism²⁸ and spermicidal activities²⁹, 30

Medicinal plants are rich in various phytoconstituents they show inhibitory effect on male fertility by virtue of their individual or synergistic activity Many plants containing flavonoids, tannins, terpenes, quinines, diterpenoid lactones have been reported to induce male antifertility effects by different mechanism³¹⁻³³.

In the present review, research papers published during the last few years (w.e.f. year 2000) on male antifertility inducing plants are compiled in the Table-1.

CONCLUSION

Based on the above review of literature it may be concluded that a large number of medicinal plants have been investigated science the year 2000 to present, for their antifertility activities in order to develope a male contraceptive agent of herbal origin. Out of these, some plants have shown promising results. However, most of the studies have been carried out on crude extracts and due to ecological variations their phytoconstitutents are not properly defined. Information regarding exact mode of action and safety is yet not properly known. Needless to say, further studies on the isolation, characterization of active principle(s) and their efficacy and safety of these plant preparations requires further investigation in depth.

ACKNOWLEDGEMENT

The authors are thankful to The Head, Department of Zoology for providing the necessary facilities and also to UGC, New Delhi for the award of Rajiv Gandhi National-JRF Fellowship to Ms. Meerwal Priyanka.

rable 1. Medicinal plants possessing male antirel tinty activity							
Name of the plant	Part used	Type of plant extract	Animal model	Doseduration and route	Observations & results	Reference	
	11		IV	V	VI		
<i>Abrus</i> <i>precatorius</i> (Fabaceae)	Seeds	Aqueous extract	Mice	250 and300 mg/kg b. wt./day for 30 days,orally	Reduction in testicular sperm countand suppression of sperm motility in cauda epididymis.	25	
II	Seeds	Ethanol extract	Mice	20 and 60 mg/kg b.wt./day for 20 days, intraperitoneal	Highly significant decrease in daily sperm production.Plasma testosterone level decreased significantly. Reversibility in sperm production was observed in all the treated animals.	17	
Actinidia chinensis (Grossulariaceae)	Whole plant	50% Ethanol extract	Rat	75,100,150 mg/kg b. wt./day for 50 days, orally	Decrease in sperm count, motility, blood levels of testosterone and estradiol.	34	
Adiantum Iunulatum Burm(Adiantace ae)	Whole plant	50% Ethanol extract	Rat	100,250,500m g/kg b.wt./day for 30,60 and 90 days,orally	Deformation in the germ cells of testis,Leydig cells were atrophied. No spermatozoa could be seen in the seminiferous tubules.Withdrawal of treatment results in the restoration of the changes.	35	

Table 1: Medicinal plants possessing male antifertility activity

<i>Aegle marmelos</i> (Rutaceae)	Leaves	Aqueous extract	Rat	200 mg/kgb.wt./da y for 60 days,orally	A highly significant decrease in the weights of testes, epididymis, seminal vesicle, ventral prostate and vas deferens was observed. Sperm motility as well as sperm density in the cauda epididymis was reduced significantly.Serum testosterone levels also reduced significantly in the experimental group.	36
"	"	Aqueous extract	Rat	50 and 100 mg/kg b.wt./day for 28 days,orally	Germ cell number in different generations at stage VII reduced significantly.	37
Allium sativum (Amaryl lidaceae)	Bulb	Aqueous extract	Rat	5%, 10% and 15% in diet for 30 days	Significant decrease plasma and intratesticular testosterone levels.Induced a spermatogenetic arrest.	38
"	Cloves	Aqueous extract	Rat	500 and 1000 mg/kg b.wt./day,orall y	Percentage of morphologically normal spermatozoa and sperm concentration were significantly reduce, also caused a significant reduction in SOD activity in the blood.Reduction in testosterone concentration and alteration in spermatogenesis was also noticed.	39
Albizia lebbeck L. benth. (Fabaceae)	Pods	Methanol extract	Rat	50, 100 and 200 mg/kg b. wt./day for 60 days,orally	Sperm motility and density were significantly reduced. There was a marked reduction in the number of primary and secondary spermatocytes and spermatids. The Sertoli cells count was significantly decreased.	23
Aloe vera (Asphodelaceae)	Leaves	Aqueous extract	Rat	30 ,70 and 100 mg/kg b.wt./day for 56 days,orally	Decrease in sperm motility and testicular weight was observed in treated rats.	40
Alstonia macrophylla (Ap ocynaceae)	Leaves	95% Methanol and n-butanol fraction	Goatspermat ozoa	600 μg/ml 100 μg/ml (in-vitro)	Inhibition of sperm forward motility.	41
Alstonia scholaris R.br.(Apocynace ae,)	Stem bark	Ethanolextract	Rat	200 mg/kg b.wt./day for 60 days, orally	Weights of testes, epididymies, seminal vesicle and ventral prostate was significantly reduced. The seminiferous tubule and Leydig cell nuclear area were reduced significantly	42
Althaea rosea (Malvacea e)	Flower s	Methanol extract	Rat	100 mg/kg b.wt./day for seven weeks, orally	Increase in the activities of glucose-6- phosphatase-dehydrogenase and 5-beta hydroxysteroid dehydrogenase in the Leydig cells.Hyperplasis of the interstitial tissue was also seen.	43
Andrographis paniculata wall.exnees (Acanthaceae)	Leaves	Aqueous extract	Rat	100 and 200mg/kg b.wt./day for 45days,orally	Significant decrease in the weights of testis, epididymes and seminal vesicle was observed. Reduction in the testicular and epididymal sperm count, motility and increase in the abnormal sperm count was also observed.	26
"	Leaves	Andrographilode	Rat	150 and 200 mg/kg b. wt./day for 48 days, orally	Sperm count decreased, sperm were non-motile. Seminiferous epithelium thoroughly disrupted.Sertoli cell damage and spermatotoxic effects were also apparent.	22
Austroplenckia populnea(Celast raceae)	Stem	Hydro-methanol extract	Rat	500 mg/kg b.wt./day for 70 days ,orally	Number of intromissions, latencies to first mount and ejaculations were significantly decreased. Epididymal sperm concentration reduced.	44

	r	1				
Azadirachta excels (Meliaceae)	Leaves	Aqueousextract	Mice	250 mg/kg b.wt./day, for 21 days, orally	Seminiferous tubules indicating mixing of the germ cell types in stages of spermatogenesis, atrophy of the spermatogenic elements, and absence of the spermatozoa in the lumen.	45
Azadirachta indica (Meliaceae)	Seeds	95% Ethanol extract	Mice	100 mg/kg b.wt./day for 15 days ,orally	Significant reduction in fertility rate.Decline in ATPase activity in caput and cauda epididymis, However, the extract did not cause any change in the body and organ weights.	46
"	Leaves	Aqueous extract	Mice	50, 100, and 200 mg/kg b.wt./day, for 28 days, orally	The affected seminiferous tubules showed intraepithelial vacuolation, occurrence of giant cells, mixing of germ cell types and degenerated appearance of germ cells.	47
"	"	Aqueous extract	Rat	250 and 350mg/kg b.wt./day for 30 days,orally	A significant decrease in the weights of testis, epididymis and seminal vesicle was observed. A dose related reduction in the testicular sperm count, epididymal sperm count and motility with an increase in abnormal sperm count was observed.	48
"	"	Aqueous extract	Rat	500 and 0.25 mg/kg b. wt./day for 30 days,orally	Atrophic seminiferous tubules with widening intercellular spaces, regression of Leydig cells were seen in treated rats.	49
"	"	Aqueousextract	Rat	50, 100 and 150 mg/kg b. wt./day for 15 days, orally	Decrease in mean epididymalsperm counts and significant increase in sperm head abnormality when compared with the control group.There was a significant decrease in serum testosterone level also.	20
Barleria prionitis L. (Acanthaceae,)	Root	Methanol extract	Rat	100mg/rat/da y for 60 days, orally	The population of preleptotene spermatocytes were decreased. Sertoli cells and mature Leydig cell numbers were significantly reduced.	50
Bougainvillea spectabilis (Fabaceae)	Leaves	Aqueous extract	Mice	800 mg/kg b.wt./day for 30 days, orally	Reduction in the size of seminiferous tubules, decrease in weight of testis and sperm count, and testosterone level was observed.	18
<i>Calendula</i> <i>officinalis L.</i> (Asteraceae)	Whole plant	Aqueous extract	Rat	150 and 300 mg/kg. b.wt./day for 60 days,orally	Induced a significant decrease in the weight of testes, epididymis, seminal vesicle and prostate. A dose related reduction in the testicular sperm count, epididymal sperm count and motility was also evident. Serum testosterone was also declined after the treatment.	51
<i>Calotropis</i> <i>procera</i> (Asclepiadaceae)	Flower	Aqueous and ethanol extract	Mice	5 or 10 mg/mouse/alt ernate day for 20 day, orally	Inducedfunctional sterility. Testes contained degenerating and necrotic germ cells. Testis weight was significantly reduced.	52
"	Fresh leaf	Aqueous extract	Rat	2mg/gm b.wt./day for 7,14,21,28 and 35 days, orally	Desquamation of epithelial cells of seminiferous tubule, collection of pinkish fluid in accessory glands.	53
<i>Cananga odorata Lam</i> (Annonaceae)	Root bark	50% Ethanol extract	Rat	1g/kg b.wt./day for 60 days, orally	Epididymal sperm motility and sperm count reduced.However, morphological abnormalities in the spermatozoa increased. Serum testosterone was significantly decreased in treated group.	24
Capparis aphylla Roth.(Capparida ceae)	Whole plants	95% Ethanol extract	Rat	50,100,200 mg/kg b. wt./day for 55 days, intraperitoneal	Resulted in complete loss of fertility attributed to decline in epididymal sperm counts and motility.	54
Carica papaya (Caricac eae)	Seed	Aqueous extract	Rat	0.5 mg/kg b.wt./day for 7	Significant reduction in protein and sialic acid in epididymal fluid and sperm pellet. Altered epididymal	55

				days, orally	microenvironment.	
"	Π	Chloroform extract	Langur monkey	50 mg/kg b.wt. for 360 days, orally	Decreased the sperm concentration since days 30-60 of treatment with a total inhibition of sperm motility.A decreasein sperm viability and an increase in sperm abnormality was also recorded.	56
"		Ethanol extract	Rat	100 and 250 mg/kg b.wt./day for 90 days, orally	Results showed reduced and zero pregnancy outcomes in the females mated with treated males.Histopathological analysis showed a moderate to highly depleted germinal epithelium.	57
Cassia alata L . (Caesalpinaceae)	Flower s	95% Ethanol extract	Rat	500 mg/kg b.wt./day for 60 days, orally	Decrease in epididymal sperm count, motility and fertility was recorded. Reduction in the diameters of seminiferous tubules and Leydig cell's nucleus was also observed.	58
Cassia angustifolia (caesalpinaca)	Leaves	Aqueous extract	Rat	50 and 100 mg/rat/day for 45 days ,orally	The weights of reproductive organ like testis, epididymis, seminal vesicle and ventral prostate was decreased significantly. Sperm motility and count were also reduced significantly with an increase in abnormalities of sperm.	27
Cassia fistula (Fabaceae)	Leaves	Ethanol extract	Rat	60 mg/kgb. wt./day for 48 days, orally	Sperm count, sperm vitality, sperm motility were significantly decreased.	59
Cestrum parqui (Solanace ae)	Leaves	Aqueous extract	Human	40-250 µg/ml (in vitro)	Spermicidal activity was observed.	30
Chenopodium album (Amaranthaceae)	Seeds	Aqueous decoction	Rat and rabbit	0.25,0.5,1.0,1.5 and 2.0 mg/ml (in-vitro)	Immobilization of spermatozoa. Disintegration of sperm plasma membrane and dissolution of acrosomal membrane.	60
Chromolaena odorata (Asteraceae)	Leaves	Alkaloid Extract	Rat	250, 500 and 1000 mg/kg b.wt./day for 60 days,orally	The serum LHand FSH levels, as well as testicular and serum testosterone levels decreased significantly. There was a significant decrease in the sperm count,motility, and density.Morphological changes in the sperm cells were also observed.	61
"	"	Aqueous extract	Rat	250 and 500 mg/kg b. wt./day for 14 days, orally	Resulted in reduction in testicular weight, acid phosphatase activity, protein, sialic acid and testosterone concentration.	62
Chrysophyllum albidum (Campodeoid)	Root bark	Ethanol extract	Rat	100 and 200 mg/kg b. wt./day for 21 days, orally	Decrease in the cauda epididymal sperm count, significant reduction of serum testosterone, LH and FSH concentration. and sperm production in treated rats.	21
<i>Citrus limonum</i> (Rutaceae)	Seeds	Alcoholic extract	Rat	200 mg/kg b.wt./day for 30 and 60 days, orally	Significantly decreased the sperm count,size and weights of the testis and epididymis. Induced atrophic changes in testis and epididymis. Drastic effect on sperm motility and morphology leads to inhibition of fertility.	63
Citrullus colocynthis Schrad (Cucurbitaceae)	Fruits	50% Ethanol extract	Rat	100 mg/kg b.wt./day for 60 days, orally	Significantly reduced cauda epididymis sperm motility, density, and circulatory levels of testosteronewas observed in extract treated rats.	64
Colebrookia oppositifolia Sm. (Tiliaceae)	Leaves	Ethanol extract	Rat	100 and 200 mg/kg b. wt./day for 8- 10 weeks,	Seminal vesicles and ventral prostate showed a significant reduction in the weights at the higher dose only. Treated animals also showed a notable	65

				orally	depression of spermatogenesis.	
Crotalaria juncea L. (Fabaceae)	Seeds	Petroleum ether, benzene and ethanol extracts	Mice	25 and 100 mg/kg b.wt./day for 30 day, intraperitoneal	Decrease in the number of spermatogonia, spermatocytes and spermatids in testis along with reduced caudal spermatozoa.Degeneration of Leydig cells indicate inhibitionof steroidogenesis.	16
<i>Curcuma longa</i> (Zingibera ceae)	Rhizo me	Aqueous extract	Mice	600 mg/kg b.wt./day for 56 and 84 days, orally	Degenerative changes in the seminiferous tubules, suppression of spermatogenesis and fertility.	66
<i>Cyamposis</i> <i>psoralioides</i> (Leguminosae)	Pods	Ethanol extract	Mice	200 and 400 mg/kg b.wt./day for 40 days, orally	Weight of the testis and other accessory reproductive organs decreased significantly,Reduction in the caudal epididymal sperm counts was also noticed.	67
<i>Dendrophthoe</i> <i>falcate</i> (Loranth aceae)	Stem	Methanol extract	Rat	100 mg/kg b.wt./day for 60 days,orally	Weight of the testes, epididymis, seminal vesicles and ventral prostate showed a significant reduction. Testosterone level also declined significantly.	68
Echinacea purpurea (Aster aceae)	Root	Ethanol extract	Rat	50 mg/kg b.wt. for 4 and 8 weeks,orally	Resulted in a significant reduction in the percentage of testicle and body mass, inhibition of spermatogenesis.	69
Echino psechinatus Roxb.(Asteracea e)	Root	Petroleum ether extract	Rat	30 and 60 mg/kg b. wt./day for 8 days, orally	Reduction in reproductive organ weights. Decrease in serum testosterone and epididymal sperm count was observed.	70
Euphorbia hirta (Euphorbiaceae)	Leaves	Aqueous extract	Rat	400 mg/kg b. wt./day for 14 days ,orally	Resulted in testicular degradation and reduction in seminiferous tubular diameter.	71
Eurycoma longifolia Jack (El) (Simaroubaceae)	Whole plant	Aqueous dried extract	Rat	8 mg/kg b.wt./day for 14 days, orally	Showed inhibitory effects on testosterone production and spermatogenesis.	19
<i>Feroni</i> <i>aelephantum</i> (R utaceae)	Leaf and bark	95% Ethanol extract	Rat	400 mg/kg b.wt./day for 14 days, orally	Increasd serum level of FSH and estrogen but decreased the levels of LH and testosterone.	72
Ficus bengalensisL. (Moraceae)	Leaves	Ethanol extract	Mice	200 and 500 mg/kg b. wt./day for 35 days, orally	Suppression of the spermatogenesis and adverse effects on sperm quality and fertility was noticed.	73
Gossypium herbaceum (Mal vaceae)	Seeds	Gossypol	Human	10 and 12.5 mg every other day for 16-18 months, orally	Sperm motility and density reduced to infertile levels,Serum levels of potassium, FSH, LH and testosterone were not significantly changed.	74
IJ	11	"	Hamster	2.5 μg-60 μg/ml for 15 min. (<i>in- vitro</i>)	Inhibition of acrosin and aryl sulfatase activity.	75
"		n	Mice	5 to 80 μL (<i>in- vitro</i>)	Gossypol irreversibly inhibited T-type ca ²⁺ currents in the spermatogenic cells, inhibit capacitation and the acrosome reaction in mammalian sperms.	76
Hibiscus-rosa- sinensis (Malvaceae)	Flower s	Aqueous extract	Rat	150 and 300 mg/kg b.wt./day for 15,30, 45 & 60 days orally	Showed change in germinal epithelium of the testis ranging from mild damage to near total sloughing, depending upon the duration of the treatment.	77
Hibiscus sabdariffa (Malvaceae)	Calyx	Aqueous extract	Rat	days, orally 1.15,2.30 and 4.60 g/kg for 12 weeks,	Distortion of tubules,hyperplasia of testis and disintegration of sperm cells.	78

				orally		
<i>Hymeno cardiaacida</i> (Euphorbiaceae)	Stem bark	Aqueous ethanol extract	Rat	100, 200 and 400 mg/kg b. wt./day for 8 weeks, orally	Significant reduction in the weights of testes, epididymis, ventral prostrate, seminal vesicles and vasa differentia was observed.	79
Lepidium meyenii (Brassic aceae)	Hypoc otyle	Aqueous extract	Rat	2g/kg b. wt./day for 14 and 42 days, orally	Resulted in a reduction in epididymal sperm count, induced testicular disturbances and reduced spermatogenesis.	80
Leptadenia hastate pers.(Cyperacea e)	Leaves and stem	Aqueous extract	Rat	100, 200,400 and 800 mg/kg b.wt. for 60 days, orally	Significant reduction in the number of sperms in the testis and the cauda epididymis. Showed a decrease in the weight of testes and epididymis.Suppression of Spermatogenesis was also observed.	81
Madhuca latifolia (Roxb.) Macbride (Sapotacee)	Seeds	Aqueous extract	Rat	2gm/b. wt./day for 21 days, orally	Significant decrease in sperm count and decrease in the weights of testes,epididymis, and other sex accessory glands was observed.	82
<i>Malvaviscus conzattii</i> (Malvaceace)	Flower s	Alcohol extract	Mice	30 and 50 doses (one dose = 50 mg/day/mous e), orally	Resulted in a significant decrease in absolute weights of testes, epididymes, vas deferens and seminal vesicles. Epididymal epithelium was regressed. Fructoseconcentration in seminal vesicles declined and reduction in spermatogenesis.	83
<i>Mangifea indica</i> (Anacardiaceae)	Leaves	Methanol extract	Rat	1g/kg b. wt. /day for 28 days, orally	Reduction in sperm count motility,morphology,live death ratio,and number of litter size in treated rats.	84
<i>Martynia</i> <i>annua</i> (Lamiace ae)	Root	50% Ethanol extract	Rat	50,100 and 200 mg/kg b. wt./day for 60 days, orally	Significant decrease in the weights of testes, epididymis, seminal vesicle and ventral prostate and reduction in the testicular and epididymal sperm count and motility was observed. Spermatogenesis arrested at the secondary spermatocyte stage.	85
<i>Menthe</i> <i>arvensis</i> <i>L</i> .(Lamiaceae)	Root	Petroleum ether extract	Mice	10 and 20 mg/mouse/da y for 20,40 and 60 days, orally	Significant decrease in the weight of testisand accessory sex organs, spermcount,motility and viability.	86
<i>Mimusops</i> <i>elengi L.</i> (Sapotaceae)	Seeds	Aqueous extract	Rat	2g/b.wt. for 21 days, orally	Significant decrease in sperm count and serum testosterone level .The decrease in the weight of accessory sex organsand inhibition of spermatogenesis was also noticed.	87
<i>Momordica</i> <i>charantia</i> (Cucurbitacea)	Seeds	Aqueous extract	Rat	50 mg/kg b.wt./day for 16 week, orally	Significant reduction in serum testosterone concentration due to the destruction of the Leydig cells and decreased sperm production.	88
<i>Mondia whitei</i> <i>L</i> .(Apocynaceae)	Root bark	Aqueous extract	Rat	400 mg/kg b.wt./day for 55 days, orally	Induced testicular lesions.Degenerative changes in seminiferous tubules and epididymis. Increase in protein content of testes and epididymis. However Testicular concentrations of testosterone remained unchanged at all the time.	89
<i>Morinda</i> <i>lucida</i> (Amarylli daceae)	Leaves	Methanol extract	Rat	400 mg/kg b.wt./day for 4 and 13 weeks, orally	Increase in testicular weight and testosterone level.However,a significant decline in progressive sperm motility was observed.	90
<i>Mucuna urens</i> <i>L</i> .(Fabaceae)	Seeds	Aqueous extract	Guinea pig	70 and 140 mg/kg b. wt./day for 8 weeks, orally	No pregnancy in females mated with treated males was observed. Complete degeneration of sperm and spermatids in seminiferus tubules was observed.	91

Jain et al.

ISSN: 2249-9504

		I I		E0, 100 and	Weights of reproductive organs	
Nelumbo				50, 100 and 200	Weights of reproductive organs decreased significantly along with	
nucifera	Seeds	50% Ethanol extract	Rat	mg/rat/day for	significant suppression of cauda	
	Seeus	50% Ethanoi extract	Kal			92
(Nymphaeacae)				60 days, orally	epididymal sperm count, motility, and	
				11 00	concentration of testosterone in blood.	
				11 – 88	Sperm count and motility were	
Ocimum				mg/kg daily for	decreased. Percentage of abnormal	93
gratissimum L.	Leaves	Aqueous extract	Mice	1, 2 and 4	sperm cells, sperm debris and	
(Lamiaceae)	LCaves	Aqueous extract	WIEC	weeks, orally	primordial cells were increased.No	
(Lannaceae)					significant effects on the serum levels of	
					testosterone, LH and FSH was observed.	
0					Resulted in a significant decrease in the	
Ocimum			5	2 g/rabbit for	sperm count. Serum testosterone levels	
Sanctum	Leaves	Aqueous extract	Rabbit	30 days, orally	showed marked increase, while FSH and	94
(Lamiaceae)					LH levels were significantly reduced	
					Sperm count, motility and forward	
				250	velocity decreased, while percentage of	
	Leaves	Benzene extract	Rat	mg/kg	abnormal sperms increased. Fructose	
"	Leaves	Denzene extract	Kal	b.wt./day for		95
				48 days, orally	content in plasma of cauda epididymis	
			D ·	, , ,	was reduced.	
			Rat		Caused significant decrease in the	
				50	weight of testes, epididymis, seminal	
Opuntia dilleni	Phyllo			mg/kg	vesicles and ventral prostate.Production	
haw.	clade	Methanol extract		b.wt./day for	of spermatid was also reduced. Motility	96
(Cactaceae)	ciauc			30 days, orally	of the cauda-epididymal spermatozoa	70
				50 days, or any	was diminished significantly.	
					was diminished significantly.	
				100,200,250,3	Decrease in the fructose level of the	
Phyllanthus				00mg/kg		
<i>niruri</i> (Euphorbi	Whole	Aqueous extract	Rat	b.wt./day for	seminal fluid. Decline of sperm motility,	97
aceae)	plant	i iquee de citte det		two weeks,	count and viability of the sperm in	
40040)				orally	treated groups was alsoobserved.	
				50	Resulted in a reduction in the caudal	
Piper betel L.		95% Ethanol		mg/kg	epididymal sperm count, sperm motility	
(Piperaceae)	leaves		Rat	b.wt./day for	as well as sperm viability, and serum	98
(Pipei aceae)		extract				90
				15days,orally	level of testosterone.	
				Initially, 500		
				mg extract for	Induced a suppression of cauda	
				30 days and	epididymal sperm count, motility and	
	Leaf-	Alcohol extract	Mice	then 1000	an increase in cholesterol content of	
"	stalk		Whoe	mg/kg	testes but did not show any marked	99
				b.wt./day for	alterations in testosterone content in	
				next 30 days,	serum.	
				orally		
				25 and 100	Histologically, testes in treated mice	
Din en misser i				mg/kg	showed non-uniform degenerative	
Piper nigrum L.	Fruits	Aqueous extract	Mice	b.wt./day, for	change in the seminiferous tubules. The	
(Piperaceae)				20 and 90	treatment also had adverse effects on	14
				days, orally	sperm parameters.	
	1				Significant decline in the weight of	
				500	testes,epididymis, seminal vesicle and	
Plumeria				mg/kg	ventral prostate of rats. The sperm	
	Leaves	Benzene extract	Rat	b.wt./day, for	count and motility of cauda epididymal	100
bicolor	1					100
<i>bicolor</i> (Apocynaceae)				60 days, orally	spermatozoa were also reduced significantly.	
				100		
				100 and 200	The relative wegiht of the testes and	
(Apocynaceae)				mg/kg	The relative wegiht of the testes and epididymis,epididymal sperm count and	
(Apocynaceae) Polygala	Whole			mg/kg b.wt./day for	The relative wegiht of the testes and epididymis,epididymal sperm count and motility were reduced significantly in	
(Apocynaceae)	Whole	Ethanol extract	Rat	mg/kg	The relative wegiht of the testes and epididymis,epididymal sperm count and	117
(Apocynaceae) Polygala	Whole plant	Ethanol extract	Rat	mg/kg b.wt./day for	The relative wegiht of the testes and epididymis,epididymal sperm count and motility were reduced significantly in	117
(Apocynaceae) Polygala rosmarinifolia		Ethanol extract	Rat	mg/kg b.wt./day for	The relative wegiht of the testes and epididymis,epididymal sperm count and motility were reduced significantly in treated rats. There was an increased in	117

Portulaca oleracea (Portulacacea)	Leaves and stems	70% Methanol extract	Rat	25,50 and 75mg/kg b.wt./day for 50 days, orally	Caused a significant decrease in testosterone level, reduction in percentase of progressive sperm motility and an increase in percentage of abnormal sperm cells. Reduction of germinal epithelial cells in seminiferous tubules was also noticed.	101
Quassia amara <i>L.</i> (Simaroubaceae)	Stem wood	Methanol extract	Rat	50 and 100 mg/kg b. wt./day for 15 days, orally	A marked decreased in sperm count, motility and viability along with an increase in sperm abnormalitie and decrease of α-glucosidase activity in epididymis was also observed.	102
Rosmarinus officinalis L . (Lamiaceae)	Leaves	Ethanol extract	Rat	250 and 500 mg/kgb. wt./day for 63 days, orally	Significant decline in spermatogenesis in testes due to decrease in the number of primary and secondary spermatocytes and spermatids.Significant decrease in testosterone level was also observed.	103
Ricinus communis L . (Euphorbiaceae)	Root	50% Ethanol extract	Rat	50 mg/100 g.b. wt/day for 60 days, orally	Induced a reduction in the epididymal sperm count. Alteration in the motility, mode of movement and Morphology of the sperms was also observed.	104
Ruellia tuberosa L (Acanthaceae)	Tuber ous roots	Aqueous extract	Rat	50 ,100 and 150 mg/kg b. wt./day respectively for 21 days, orally	Significant decrease in sperm count, sperm density and gradual increase in average anti-spermatogenic activity was observed in treated rats.	15
Ruta graveolens L. (Rutaceae)	Herb	Aqueous extract	Rat	5 mg/kg b.wt./day for 30 days, orally	A significant reduction in sperm motility, changes in morphology, viability, DNA integrity and testosterone levels was seen.	105
"	Whole plant	Aqueous extract	Rat	500 mg/kg b.wt./day for 60 days, orally	Significant decrease in the weight of reproductive organs, level of serum testosterone and FSH with suppression of sexual behavior was observed in treated rats.	106
Sapindus mukorossi (Sapindaceac)	Fruit pericar p	Aqueous extract	Rat	50 mg/kg b.wt./day for45 days, orally	Significant inhibition of sperm motility in the caput, corpus and cauda regions of the epididymis, significant decrease in testicular weight and caudal sperm count was observed.	107
Sapindus saponaria (Sapindaceae)	Bark	-	Human	-	Showed spermicidal activity.	29
Salvadora persica (Salvadoraceae)	Sticks	Ethanol extract	Mice	800 mg/kg b.wt./day for 30 days, intragastrically	Weight of the testes and preputial glands were significantly increased and that of the seminal vesicles was significantly decreased in treated males.	108
<i>Sarcostemma acidium roxb.</i> (Apocynaceae)	Stem	Methanol extract	Rat	50 and 100 mg/kg b. wt./day for 60 days, orally	Treatment caused a significant reduction in sperm count, motility and suppression of fertility. A significant change in biochemical milieu and arrest of spermatogenesis was observed in treated rats.	13
Sedum praeltum (Crassulaceae)	Seeds	Crude Ethanol extract	Mice	10 ,20,40 and 50 mg/kg b. wt./day for 30 days, orally	Sperm viability reduced significantly.	109
Solanum Iycoparum (Solanaceae)	Fruits	Aqueous extract	Rat and mice	60,120 mg/ml and 30,60 mg/ml daily, for 5 days	Significant weightloss of ventral prostate of mice indicates antiandrogenic activity.	110

Sphenocentrum				50,100 and		
jollyanum (Menispermacea e)	Root	Methanol extract	Rat	150 mg/kg b. wt./day for 8 weeks, orally	Poor semen quality and quantity, degeneration of seminiferous tubule was evident.	111
<i>Spondias</i> <i>mombin</i> (Anacardiaceae)	Leaves	Ethanol extract	Rat	250 and 500mg/kg b. wt./day for 8 weeks, orally	Significant decrease in testicular and epididymal weight.Testis showed distortion in the arrangement of seminiferous tubules, low number of germ cells and sertoli cells. Significantly reduced serum levels of FSH, LH and testosterone was also recorded.	112
Stephania hernandifolia willd (Menispermacea e)	Leaves	Aqueous extract	Rat	2 or 4g leaves/ml distilled water/100g b.wt. for 28 days,orally	Diminution of the activities of testicular androgenic key enzymes and plasma testosterone level with spermatogenesis was seen.	113
Tabernaemontn a divaricata (Loganiaceae)	Leaves	Ethanol extract	Rat	50,100 and 200 mg/kg b. wt./day for 60 days, orally	Reduction in the testicular and epididymal sperm count and motility.Significant reduction in serum concentration of LH and testosterone was observed. The weights of testes,epididymis, seminal vesicle and ventral prostate were also reduced significantly.	114
Tecoma stans (Bignoniaceae)	Leaves	Ethanol extract	Rat	500 mg/kg b.wt./day for 60 days, orally	The relative weights of testes, epididymis, vas deferens, ventral prostate and seminal vesicle decreased significantly. Declineof testosterone level and adverse impact on sperm parameters was also observed.	115
<i>Telferia</i> <i>occidentalis</i> (Cucurbitaceae)	Seed oil	Petroleum oil	Rat	400 and 800mg/kg b. wt./day for 56 days, orally	Significantly decreased serum testosterone level, sperm count and sperm motility.	116
Terminalia chebula (Combretaceae)	Nuts	Aqueous extract	Rat	500 mg/kg b.wt./day for 45 days, orally	Decreased sperm count and motility.Levelof glutathione and catalase activity was also reduced.	28
Tinospora cordifolia (willd)miers (Menispermacea e)	Stem	Methanol extract	Rat	100 mg/rat/day for 60 days, orally	Resulted in reduction of the weights of testes, epididymis, seminal vesicle and ventral prostate in a significant manner. Sperm motility as well as sperm density and fertility were also reduced significantly.	118
Trachyspermu m ammi Linn. (Apiaceae)	Fruits	Ethanol extract	Rat	100, 200 and 400 mg/kg b.wt./day for 60 days,orally	Decreased testis weight, sperm count, sperm motility, and increased production of abnormal sperms.	119
Trichilia monadelpha (Rutaceae)	Stem bark	Aqueous extract	Rat	400 mg/kg b.wt./day, for 4 weeks, orally	A decrease in sperm count and the serum testosterone level was observed.	120
Tripterygium wilfordii Hook f. (Celastraceae)	Root	Triptolide	Rat	100 µg/kg b. wt. for 82 days, orally	Cauda epididymal sperm showed structural abnormalties,which included head-tail sepration,premature chromatin condensation.	121
II.	Root	Water choloroform- di-methylzylesterl and L-epicatechin	Mice	-	Inhibition of T-type ca ²⁺ channels in spermatogenic cells.	122
Tropaeolum tuberosum (Tropaeolaceae)	Tubers	Aqueous extract	Mice	780 mg/kg b.wt./day for 7, 14 and 21 days, orally	Progressive sperm motility decreased and immobile sperm count increased significantly.	123

Jain et al.

<i>Vitex negundo</i> (Verbenaceae)	Stem bark	Petroleum ether, chloroform, and methanol extracts	Mice	200 mg/kg b.wt./day for 21 days ,orally	Induced a significant reduction in motility and viability of sperms.Reduction in the weight of the testis and epididymis was also evident.	124
Withania somnifera (Solanaceae)	Stem	Ethanol extract	Rat	25,50 mg/kg b. wt./day, for 60 days, orally,2- 10mg/million sperm (<i>in-</i> <i>vitro</i>)	The weight of testes & accessory sex organs decreased. A dose depended reduction in epididymis sperm count and percentage motility wasobserved. <i>In-vitro</i> spermicidal effect (100%) at 10 ± 0.066 mg/million sperm was also reported	125
Xylopiaa ethiopica (Aannonaceae)	Dried fruits	Ethanol extract	Rat	0.5mls and 1.0mls daily for 28 days, orally	Caused a significant dose depended reduction in sperm count & motility but does not affect the morphology.Arrest of spermatogenesis and degenerative changes in seminiferous tubules.No effect on blood testosterone and FSH level was observed.	126

FSH= Follicle-stimulating hormone; LH =Luteinizing hormone; ATPase= Adienosine triphosphate; SOD=Super oxide dismutase; b.wt.=Body weight

REFERENCES

- 1. India's Population 2013,Indiaonlinepages.com
- Page S T, Amory J K, Bremner W J. Advances in Male Contraception.Endocr Rev.2008 29:465–93
- Nieschlag E. The struggle for male hormonal contraception. Best Practice Res Clin. Endrocrin Metabol .2011;25: 369-375
- Finer, L B, Henshaw, S K. Abortion Incidences and Services in the United States in 2003.Pespect Sex Reprod Health. 35:6–15
- Glasier A. Acceptability of contraception for men: a review. Contraception 2010;82(5):453–456.
- Garside D A, Ayman Gebril, Manal Alsaadi, Natalie Nimmo, Alexander B Mullen, Valerie A Ferro. An update on the potential for male contraception: emerging options. Open Access Journal of Contraception.2013; 4: 1–11.
- Fernandez-Balsells, M M, Murad, M H, Lane, M, et al. Clinical review: Adverse Effects of Testosterone Therapy in Adult men: A systematic review and metaanalysis. J. Clin EndocrinolMetab.2012; 95: 2560-2575
- Nya-Ngatchou J J and Amory J K. New approaches to male non hormonal contraception.contraception.2012; 87:296-299
- 9. PaulKogan M D, MosheWald M D. Male Contraception History and

Development. Urol Clin N Am. 2014 ;41: 145–161

- 10. Kamboj V P. A review of Indian medicinal plants with interceptive activity, Indian J.Med Res.1988;87 336-356
- 11. Maurya R, Shrivastava, S, Kulshreshta, D.K. and Gupta C.M. Traditional remedies for fertility regulation. Current Medicinal Chemistry.2004; 11: 1431-1450
- 12. WHO, 2000. Reproductive health research at WHO: a new beginning, Biennial Report 1998-99, Special Programme of Research, Development and Research Training in Human Reproduction, World Health Organization, Geneva.
- Verma P K, Sharma A, Mathur A, Sharma P , Gupta R S, Joshi S C and Dixit V P. Effect of Sarcostemma acidum stem extract on spermatogenesis in male albino rats. Asian J. Androl. 2002; 4 (1) : 43-47
- 14. Mishra R K and Singh S K. Antispermatogenic and antifertility effect of fruit of Piper nigrum L. in mice.Indian journal of experimental biology. 2009; 47 (9) : 706-714
- 15. Bhogaonkar P Y, Kanerkar U R, Indurwade N H and Chondekar R. P. Antispermatogenic effect of the aqueous root extract of Ruellia tuberosa I. on albino rats. 2012; 1 (4)
- 16. Vijaykumar B, Sangamma I, Sharanabassapa A, Patil A, and Saraswati B. Antispermatogenic and hormonal effects of Crotolaria juncea

Linn. Seed extract in male mice.Asian J. Androl. 2004; 6 (1) : 67-70

- Jahan S, Saeed N , Ijlal F, Khan M A, Ahmad M, Zafar ,M.and Abbasi ,A M. Histomorphological study to evaluate anti-fertility effect of Abrus precatorius L. in adult male mice Journal of Medicinal Plants Research. 2009; 3(12) : 1021-1028.
- Mishra N, Joshi S, Tandon V L, Munjal A. Evaluation of anti-fertility potential of Aqueous Extract of Bougainvillea spectabilis Leaves in Swiss Albino Mice.International journal of pharmaceutical science and drug Research. 2009; 1 (1): 19-23
- 19. Wahab N A, Mokhtar, N M, Halim W N H, Das S. The Effect of Eurycoma longifolia Jack on Spermatogenesis in Estrogen-Treated Rats .Clinics (Sao Paulo).2010; 65: (1) 93–98
- Ekaluo U B, Ikpeme E V, 1udensi O, Madunagu B E, Markson A A, Omosun G and Umana E J. Anti-fertility activity of aqueous leaf extract of neem (Azadirachta indica) in male albino rats. World Journal of Medical Pharmaceutical and Biological Sciences. 2011; 1(1): 2249-2887
- 21. Onyeka C A, Aligwekwe A U, Olawuyi T S, Nwakanma A A et al. Antifertility Effects of Ethanolic Root Bark Extract of Chrysophyllum albidum in Male Albino Rats . International Journal of Applied Research in Natural Product. 2013; 5 (1) : 12-17
- 22. Akbarsha M A and Murugaian P. Aspects of the male reproductive toxicity/male antifertility property of andrographilode in albino rats: Effects on the testis and the cauda epididymidal spermatozoa. Phytother. Res. 2000; 14 (6): 432-435
- 23. Gupta R S, kachhawa J B, Chaudhary R. Antifertility effects of Methanolic pod extract of Albizzia lebbeck (L.)Benth in male rats.Asian j androl. 2004; 6 (2): 155-159
- 24. Anita P and Indra .Impact of feeding ethanolic extract of root bark of cananga odorata (Lam) on reproductive functions in malr rat.Indian journal of experimental biology. 2006; 44 (12): 976-980

- 25. Morey R A & Khandagl A J .Antifertility potential of Abrus precatorius against male albino mice. Indian Streams Research Journal.2011; I :45-59
- 26. Sathiyaraj K, Sivaraj, A, Thirumalai T, Baskaran N, Vinothrasu K, Inbasekar P, B Senthil kumar . Antifertility Activity of Aqueous Leaf Extract of Andrographis paniculata in Male Albino Rats International Journal of Pharmaceutical & Biological Archives. 2011; 2(4):1179-1182
- 27. Dhanapal R, Babitha J, Kandeepan S and Murugaian P. Testicular Antifertility Action of Cassia angustifoliain Male Albino Rats.Supplement to Advanced Bio Tech. 2013; 12 (7): 2319-6750
- 28. Krishnamoorty P, Vaithinathan S, Vimal Rani A, and Bhuvaneswari A. Effect of Terminalia chebula fruit extract on lipid peroxidation and antioxidative system of testis of albino rats. Afr. J. Biotech. 2007; 6 (16) : 1888-1891
- 29. Alvarez-Gomez A M, Cardona-Maya W D, Castro-Alvarez J F, Jiminez S and Cadavid A. Colombian plants with spermicidal activity, new options in anticonception: Brief review. Actas. Urol Esp. 2007; 31 (4): 372-381
- Souda K, Alib S, Mounrib A and Mounria T M. Spermicidal activity of extract from Cestrum parqui.Contraception.2007; 75: (2) 152-156
- Reddy MK, Reddy MVB, Gunasekar D, Murthy MM, Caux C, Bodo B. A flavone and an unusual 23-carbon terpenoid from Andrographis paniculata. Phytochemistry. 2003; 62(8): 1271-1275.
- 32. Rao Y K, Vimalamma G, Rao CV, Tzeng Y M. Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry. 2004; 65 (16): 2317-2321.
- 33. Joshi SC, Sharma A, and Chaturvedi M. Antifertility potential of some medicinal plants in males: an overview. International Journal of Pharmacy and Pharmaceutical Sciences. 2011; Suppl 5, 204-217
- 34. Panjeh-Shahin M R, Dehghani F, Talaei-Khozani T and Panahi Z. The effect of Hydroalcoholic Extract of Actinidia chinensis on sperm count and motility and on the Blood Levels of Estradiol and

Testosterone in male Rats. Arch.Iranian Med. 2005; 8 (3): 211-216

- 35. Bhatia D K, Sharma A K, Pathania P C and Khanduri N C . Antifertility effects of crude different of Adiantum lunulatum Burm.On reproductive Organs of male albino rats. Biological Forum -An International Journal. 2010; 2(2): 88-93
- 36. Chauhan A, Agarwal M, Kushwaha S & Mutreja A. Antifertility studies of Aegle marmelos Corr., an Indian medicinal plant on male albino rats Egyptian Journal of Biology. 2008; 10: 28-35
- 37. Das U K, Maiti R,Jana D and Gosh D. Effect of aqueous extract of leaf of Aegle marmelos on testicular activities in rats.Iranian J. phar. Therapeutic. 2006; 5 (1): 21-25
- Hammami I, Amara S, Benahmed M, May M V EI and Mauduit C.Chronic crude garlic-feeding modified adult male rat testicular markers: mechanisms of action Reproductive Biology and Endocrinology. 2009; 7:65
- 39. Omotoso G, A Oyewopo R Kadir, S Olawuyi, A Jimoh. Effects Of Aqueous Extract Of Allium Sativum (Garlic) On Semen Parameters In Wistar Rats. The Internet Journal of Urology. 2009; 7 (2)
- 40. Oyewopo A O, Oremosu A A, Akang E N, Noronha C C, and Okanlawon A O. Effects Of Aloe Vera (Aloe Barbadensis) Aqueous Leaf Extract On Testicular Weight, Sperm Count And Motility Of Adult Male Sprague-Dawley Rats Journal of American Science.2011;7(4)
- 41. Chattopadhyay D, Dung dung S R ,Das K ,Saha S ,Mandal A B and Majumder G C. sperm motility inhibiting activity of a phytosterol from Alstonia macrophylla Wall ex A.DC. leaf extract: a tribal medicine.Indian J. Exp.Biol. 2005; 43 (11): 104-109
- 42. Gupta R S, Sharma R, Sharma A, Bhatnager A K, Dobhal M P, Joshi Y C and Sharma M C. Effect of Alstonia scholaris bark extract on testicular function of wistar rats. Asian J.Androl. 2002; 4 (3): 175-178
- Papiez M A. The influence of Hollyhock extract administration on testicular function in rats.J.Mol.Histol.2004; 35: (8-9) 733-740

- 44. Mazaro R,Stasi L C and Kempinas W G. Effects of hydromethanolic extract of Austroplenckia populnea (Celastraceae) on reproductive parameters of male rats. Contraception. 2002; 66 (3): 205-209
- Shaher W S. Effect of Azadirachta excels (Jack) Leaf Extracts on the Reproductive Organs and Fertility of Male albino Mice (Mus musculus) Jou. Raf. Sci. 2009; 20 (3): 1-9
- 46. Dehghan M H, Martin T, Dehghanan R. Antifertility effect of Iranian neem seed alcoholic extract on epididymal sperm of mice.Iranian Journal of Reproductive Medicine. 2005; 3 (2) : 83-89
- 47. Mishra R K & Singh S K. Effect of aqueous leaf extract of Azadirachta indica on the reproductive organs in male mice .indian Journal of Experimental Biology. 2005; 43: 1093-1103
- 48. Sathiyaraj K, Sivaraj A P, Kumar V, Devi K, Kumar B S.Spermicidal Activity of Azadirachta indica (Neem) Aqueous Leaf Extract on Male Albino Rats International Journal of PharmTech Research. 2010; 2 (1) : 588-591
- 49. Aladakatti R H, Sukesh B, Jadaramkunti U C and Hiremath M B. Aspects of the antiandrogenic/antifertility property of Azadirachtin-a from Azadirachta indica leaves in male albino rats: effect on the biochemical and cauda epididymal sperm parameters.Recent research in science and technolog. 2011; 3 (2): 34-46
- 50. Gupta R S, Kumar P, Dixit V P and Dhobhal M P. Antifertility studies of root extract of Barleria prionitis Linn.In male albino rats with special reference to testicular cell population dynamics.J. Ethnopharmacol. 2000; 70 (2) : 111-117
- 51. Sharma P, Sharma A, Agarwal M. Contraceptive Potential of Calendula officinalis Aqueous Extract in Male Rats Int. J. Pharm. Sci. Rev. Res. 2013; 22(1): 192-19
- 52. Sharma N and Jacob D .Inhibition of Fertility and Functional Alteration in the Genital Organs of Male Swiss Albino Mouse after Administration of Calotropis procera Flower Extract. 2001; 39 (6) :403-407
- 53. Akinloye A K ,Abatan M O ,Alaka O O and Oke B O. Histomorphometric and

Histopathological studies on the effect of Calotropis procera (Giant Milkweed) on the male reproductive organs of the wistar rats.Afr. J.Biomed. Re. 2002; 5 (1-2): 57-61

- 54. Revathi P , Vani B, Sarathchandiran Kadalmani B et al, Reproductive toxicity of Capparis aphylla(Roth.) in male albino rats. Int J Pharm Biomed Res. 2010; 1 (3): 102-112
- Verma R J and Chinoy N J. Effect of papaya seed extract on microenvironment of cauda epididymis. Asian J. Androl. 2001; 3 (2): 143-146
- 56. Lohiya N K, Manivannan B, Mishra P K. Pathak N, Sriram S, Bhande S S and Panneerdoss S. Chloroform extract of Carica papaya seeds induces long-term reversible azoospermia in langur monkey.Asian J.Androl .2002; 4 (1) : 17-26
- 57. Hamman W O, Musa S A, Ikyembe D T, Umana U E Et al. Ethanol Extract of Carica papaya Seeds Induces Reversible Contraception in Adult Male Wistar Rats.British Journal of Pharmacology and Toxicolog. 2011; 2 (5) : 257-261
- 58. Jain G C, Ali S M. Effect of ethanolic extract of Cassia alata L. flowers on reproductive functions of male albino rats. Journal of Experimental Zoology India. 2007; 10(1): 129-132
- 59. Priya G, Saravanan K, Renuka C, Santhi M P et al., Evaluation of Anti-Fertility Activity of Ethanolic Extract of Cassia fistula (Linnaeus) Leaf on Male Albino Rats. Am.J. PharmTech Res. 2012; 2 (5) : 62-69
- 60. Kumar S, Biswas S, Mandal D, Roy H N, Chakraborty S, Kabir S N, Banerjee S and Mondal N.B. Chenopodium album seed extract: a potent sperm-immobilizing agent both in vitro and in vivo. Contraception.2007; 75: 71-78
- 61. Yakubu M T. Effect of a 60-day oral gavage of a crude alkaloid extract from Chromolaena odorata leaves on hormonal and spermatogenic indices of male rats. J Androl. 2012;33(6):1199-207.
- 62. Yakubu M T, Akanji M A and Oladiji A T. Evaluation of antiandrogenic potentials of aqueous extract of Chromolaen aodoratum (L.) K.R. leaves in male rats. Andrologi. 2007; 39 (6): 235-243

- 63. Kulkarni T R, Mateenuddin M, Bodhankar S L and Saharabudhe R A. Reversible Anti- Fertility Effect of Lemon Seeds (Citrus limonum) in Male Albino Rats International Journal of Research in Pharmaceutical and Biomedical Sciences. 2012; 3 (2)
- 64. Chaturvedi M, Mali P C and Ansari A S. Induction of reversible antifertility with a crude ethanol extract of Citrullus colocynthis Schrad fruit in male rats.Pharmacology. 2003; 68 (1) : 38-48
- 65. Gupta R S, Yadav R K, Dixit V P and Dobhal M P. Antifertility studies of Colebrookia oppositifolia "Smith" leaf extract in male rats with special reference to testicular cell population dynamics. Fitoterapia. 2001; 72 (3): 236-245
- 66. Mishra R K, Singh S K. Reversible antifertility effect of aqueous rhizome extract of Curcuma longa L. in male laboratory mice.Original research article. 2009; 79 (6): 479–487
- 67. Thejashwini M S and Krishna R H and Shivabasavaiah. Reversible Antifertility Effect of Cyamposis psoralioides in Male Swiss Albino Mice International Journal of Advanced Biological Research. 2012 ; 2 (4): 657-665
- 68. Gupta R S and Kachhawa J B S. Evaluation of contraceptive activity of methanol extract of Dendrophthoe falcate stem in male albino rats.J. Ethnopharmacol. 2007; 112 (1): 215-218
- 69. Skaudickas D, Kondrotas A and Baltrusaitis K. The effect of Echinacea purpurea extract on sexual glands of male rats. Medicinia. 2004; 40 (12): 452-457
- 70. Padashetty S A and Mishra S H. Effects of Terpenoidal fraction of Echino psechinatus roots on reproductive parameters of male rats.J.Nat.Med. 2007; 61 (4) : 452-457
- 71. Adedapo A A ,Abatan M O ,Akinloye A K, Idowu S O and Olorunsogo O O. Morphometric and Histopathological studies on the effect of some chromatographic fraction of phyllanthus amaarus and Ephorbia hirta on the male reproductive organs of rats.J.Vet. sci. 2003; 4 (2) :181-185

- 72. Muthulakshmi A, Jothibai M R, Mohan V R Antifertility Effect of Ethanol Extracts of Feronia elephantum Correa Leaf and Bark on Male Albino Rats.International Journal of Pharmaceutical Sciences and Drug Research. 2013; 5 (1) : 23-27
- Gupta P C. A Preliminary Study on Effects of Leaf Extract of Ficus bengalensis (Linn.) on Spermatogenesis and Fertility in Albino Mice. International Journal of PharmTech Research coden (usa). 2012; 4 (1): 226-232
- 74. Gu Z P, Mao B Y and Wang Y X. Low dose gossypol for male contraception. Asian J. Androl. 2000; 2 (4):283-287
- 75. Yuan Y Y and Shi Q X. Inhibition of hamster sperm Acrosomal enzymes by gossypol is closely associated with the decrease in fertilization capacity.Contraception. 2000; 62 (4): 203-209
- 76. Bai J and Shi Y. Inhibition of T-type Ca (2+) currents in mouse spermatogenic cells by gossypol, an antifertility compound. Eur.J.pharmacol. 2002; 440 (1):1-6
- 77. Jana T K, Das S, Ray A, Mandal D, Giri (Jana) S and Bhattacharya J. Study Of The Effects Of Hibiscus-Rosa-Sinensis Flower Extract On The Spermatogenesis Of Male Albino Rats. J. Phys. Pharm. Adv. 2013; 3(6): 167-171
- 78. Orisakwe O E, Husaini D C and Afonne O J. Testicular effects of sub-chronic administration of Hibiscus sabdariffa calyx aqueous extract in rats. Reprod. Toxicol. 2004; 18 (2): 295-298
- 79. Abu A H and Uchendu C N. Antispermatogenic effects of aqueous ethanolic extract Of Hymenocardia acida stem bark in Wistar rats.Journal of Medicinal Plants Research. 2010; 4 (23) :2495-2502
- 80. Gonzales G F, Miranda S, Nieto J, Fernandez G, Yucra S, Rubio J, Yi P and Gasco M. Red maca (Lepidium meyenii) reduced prostate size in rats. Reprod. Biol.Endocrinol 3: (5) 5-15
- 81. Bayala B P B, Telefo I H N, Bassole H H, Tambouraet al. Antispermatogenic activity of Leptadenia hastate (Pers.)Decne Leaf stems Aqueous Extract in male wistar rats.journal of

pharmacology and Toxicology. 2011; 6 (4): 112-121

- 82. Gopalkrishnan B, Shimpi S N. Antifertility effect of Madhuca latifolia(roxb.) macbride seed extract .International Journal of Applied Biology and Pharmaceutical Technolog. 2011; 2 (4): 43-54
- Joshi B C , Kumar S, Verma O P, Chatterjee S N. Antifertility Effects of Chronically Administered Malvaviscus conzattii Flower Extract on Male Albino Mice.Planta Med. 2007; 41 (3) : 274-280
- 84. Ibraheem S O, Olatunji-Bello I I and Awobajo F O. Anti-fertility effect of methanolic leaf extract of mangifera indica (mango leaves) on male Sprague Dawley rats. The Faseb J. 2007;21 :325-335
- 85. Mali P C, Ansari A S and Chaturvedi M. Antifertility effect of chronically administered Martynia annua root extract on male rats.J. Ethanopharmacol. 2002; 82 (2-3): 61-67
- 86. Sharma N, Jocob D. Antifertility investigation and toxicological screening of the petroleum ether extract of the leaves of Mentha arvensis L. in male albino mice. J. Ethnopharmacol . 2001; 75 (1):5-12
- Gopalkrishnan B, C L Ringmichon and Late. Dr. Sharddha N.Shimpi Seeds of MImusops elengi linn- an antifertility drug International Journal of Applied Biology and Pharmaceutical Technology. 2013; 4 (3)
- Yama O E, Duru F I, Oremosu et al., Stereological Evaluation of the Effects of Momordica charantia, antioxidants and Testosterone on Seminiferous Tubules of Rat. Int. J. Morphol. 2011; 29 (3): 1062-1068
- 89. Watcho P, Kamtchouing P, Sokeng S, Moundipa P F, Tantchou J, Essame J L and Koueta N. Reversible antispermatogenic and antifertility activities of Mondia whitei L. in male albino rat.Phytother. Res. 2001; 15 (1): 26-29
- 90. Raji Y, Akinsomisoye O S and Salman T M. Antispermatogenic activity of Morinda lucida extract in male rats.Asian J.Androl . 2005; 7 (4) : 405-410
- 91. Udoh P, and Ekpenyong J. Effect of Mucuna urens (horse eye bean) on the

gonads of male guinea-pigs. Phytother. Res. 2001; 15 (2) : 99-102

- 92. Chauhan A, Sharma K V, Chauhan S, Agarwal M. Pharmacological Evaluation For The Antifertility Effect of the Ethanolic Seed Extract of Nelumbo nucifera(Sacred Lotus). Pharmacologyonline. 2009; 2 (1): 636-643
- 93. Obianime A W, Aprioku J S and Esomon C T O. Antifertility effects of aqueous crude extract of Ocimum gratissimum L. leaves in male mice. Journal of Medicinal Plants Research. 2010; 4 (9) : 809-816
- 94. Sethi J, Yadav M, Sood S, Dahiya K and Singh V. Effect of tulsi (Ocimum Sanctum Linn.) on sperm count and reproductive hormones in male albino rabbits Int J Ayurveda Res. 2010; 1(4): 208–210.
- 95. Ahamed M, Ahamed R N, Aladakatti R H and Ghoseswar M G. Reversible antifertilty effect of benzene extract of Ocimum sanctum leaves on sperm parameters and fructose content in rats. J. Basic Clin. Physiol. Pharmaco. 2002; 13 (1): 51-59
- 96. Gupta R S, Sharma R, Sharma A, Chaudhary R, Bhatnagar A K, Dobhal M P, Joshi Y C and Sharma M C. Antispermatogenic effect and chemical investigation of *Opuntia dilleni*i Haw. Pharma.Bio. 2002; 40 (1): 411-415
- 97. Ezeonwu V U.Antifertility Effects of Aqueous Extract of Phyllanthus Niruri in Male Albino Rats The international student journal. 2011; 3 (09) : 2193
- 98. Vengaiah V, Govardhan Naik A& Changamma C. Aspects on the antifertility property of piper betel linn. leaf stalk extract: effect on gravimetric analysis and cauda epididymal sperm parameters World Journal of Pharmaceutical Research. 2014; 3 (6)
- 99. Sarkar M, Gangopadhyay P, Basak B, Chakrabarty K et al., The reversible antifertility effect of Piper betel Linn. on Swiss albino male mice.Contraception. 2000; 62 (5): 271–274
- 100. Jain G C. Antispermatogenic effect of benzene extract of Plumeria bicolor leaves in male rats. Journal of Phytological Research.2005; 18 (2) : 163-166

- 101. Oyedeji K O And Bolarinwa A F. Effects Of Crude Extracts Of Portulaca Oleracea On Male Reproductive Functions In Albino Rats IOSR Journal of Pharmacy and Biological Sciences. 2013; 4 (6) : 71-79
- 102. Parveen S, Das S, Kundra C P and Pereira B M. A Comprehensive evaluation of the reproductive toxicity of Quassia amara in male rats.Repro.Toxicol. 2003; 17 (1) : 45-50
- 103. Nusier K M, Bataineh H N and Daradkah H M. Adverse effects of Rosemary (Rosmarinus officinalis L.) on Reproductive Functionin in Adult Male Rats. Experimental Biology and Medicine. 2007; 232 (6): 809-813
- 104. Sandhyakumary K , Bobby R G and Indira M. Antifertility effects of Ricinus communis Linn. on rats .Phytother. Re. 2003; 17 (5): 508-511
- 105. Halvaei I, Hamid Reza Sadeghipour Roodsari, Zhila Naghibi Harat .Acute Effects of Ruta graveolens L. on Sperm Parameters and DNA Integrity in Rats.J Reprod Infertil. 2012;13(1):33-38
- 106. Khouri N A& EL-Akawi Z. Antiandrogenic activity of Ruta graveolens L in male Albino rats with emphasis on sexual and aggressive behavior Neuroendocrinology. 2005; 26(6):823–829
- 107. Nivsarkar M, Shrivastava N, Patel M, Padh H, Bapu C .Sperm membrane modulation by Sapindus mukorossi during sperm maturation. Asian J Androl S. 2002; 4 (3) : 233-235
- 108. Darmani H, Al-Hiyasat A S, Elbetieha A M et al. The effect of an extract of Salvadora persica (Meswak chewing stick) on fertility of male and female mice. Phytomedicine.2003;10(1): 63-5
- 109. Silva-Torres R, Montellano-Rosales H, Ramos-Zamora D, Castro-Mussot M E and Cerda-Garcia-Rojas C M. Spermicidal activity of the crude ethanol extract of Sedum praealtum in mice. J. Ethnopharmacol. 2003; 85 (1): 15-17
- 110. De Cassia da Se Sa R ,Vireque A A ,Reis J E and Guerra M O. Evaluation of the toxicity of Solanum lycocarpum in the reproductive system of male mice and rats. J. Ethnopharmacol. 2000; 73 (1-2): 283-287

- 111. Raji Y, Fadare O O, Adisa R A and Salami S A. Comprehensive assessment of the effect of Sphenocentrum jollyanum root extract on male reproductive activity in albino rats. Repro.Med.Biol. 2006; 5 (4): 283-292
- 112. Asuquo O R, Ekanem T B, Udoh P B, Eluwa M A. Histomorphological Study of the Anti-Fertility Effect of Spondias mombin L. In Adult Male Rats. IOSR Journal of Pharmacy and Biological Science. 2012; 3 (2): 29-34
- 113. Ghosh D, Jana D and Debnath J M. Effects of leaf extract of Stephania hernandifolia on testicular gametogenesis androgenesis in albino rats: a dose dependent response study. Contraception.2002; 65 (5): 379-384
- 114. Jain S, Jain A, Paliwal P, Solanki S S.Antifertility effect of chronically administered Tabernaemontana divaricata leaf extract on male rats .Asian Pacific Journal of Tropical Medicin. 2012; 5 (7) : 547-551
- 115. Mathur N, Jain G C and Pandey G. Effect of Tecoma stans leaves on the reproductive system of male albino rats. International journal of harmacology. 2010; 6 (2) : 152-156
- 116. Akang N E, Oremosu A A, Dosumu O O, Noronha C C and Okanlawon A O. The effect of fluted pumpkin (Telferia occidentalis) seed oil (FPSO) on testis and semen parameters. Agriculture and biologyjournal of North America. 2010; 1 (4): 697-703
- 117. Alagammal M, Sakthidevi G, Mohan V R. Anti-fertility activity of whole plant extracts of Polygala rosmarinifolia Wight & arn against male albino rats.Journal of Advanced Pharmaceutical Sciences. 2013; 3 (1): 82-89
- 118. Gupta R S, Sharma A. Antifertility effect of Tinospora cordifolia (Willd.) stem extract in male rats. Indian j exp biol. 2003; 41 (8) : 885-889

- 119. Kumar S, Reddy R M, Manasa G, Vanaja P. Antifertility effect of Trachyspermum ammi(Linn.) Sprague Fruits on Male Rats.International Journal of Pharmaceutical & Biological Archive.2011; 2 (2) : 705-709
- 120. Oyelowo O T, Bolarinwa O L and Morenikeji O A. Assessment of sperm indices and testosterone level on the effect of Trichilia monadelpha extract in male albino rat .African journal of pharmacy and pharmacolog. 2011; 5 (16): 1956-1958
- 121. Huynh P N, Hikim A P, Wang C, Stefonovic K, Lue Y H, Leung A, Atienza V, Baravarian S, Reutrakul V. Spermatogenesis,epididymal sperm function, and fertility in male rats. J. Androl. 2000; 21 (5) : 689-699
- 122. Bai J P and Shi Y L. Inhibition of Ca (2+) channels in mouse spermatogenic cells by male antifertility compounds from Tripterygium wilfordii.contraception. 2002; 65 (6) : 441-445
- 123. Vásquez J H, Gonzáles J M and Pino J L. Decrease in spermatic parameters of mice treated with hydroalcoholic extract Tropaeolum tuberosum"mashua".Rev. Peru. Biol. 2012; 19 (1): 089 – 093
- 124. Vasudeva N, Sharma S K, and Mor A. Spermicidal and Post-Coital Anti-Fertility Activity of Vitex Negundo Stem Bark. Journal of Herbs, Spices & Medicinal Plants. 2012; 18 (4) : 287–303
- 125. Singh A R, Singh K, Shekhawat P S. Spermicidal activity and antifertility activity of ethanolic extract of Withania somnifera in male albino rats. International Journal of Pharmaceutical Sciences Review and Research. 2013;21(2): 41, 227-232
- 126. Nwangwa E K. Antifertility Effects of Ethanolic Extract of Xylopia aethiopicaon Male Reproductive Organ of Wistar rats. American Journal of Medicine and Medical Science. 2012; 2 (1): 12-15.