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INTRODUCTION  
Tuberculosis (TB) is an airborne infectious disease 

caused by the rod-shaped pathogen Mycobacterium 

tuberculosis
1
. It is a leading cause of death 

worldwide despite being known since antiquity. An 

estimated 9 million people fell sick, and 1.5 million 

died due to TB in 2013
2,3

. A major cause of high 

TB mortality rate is the emergence of multidrug-

resistant TB (MDR-TB) and extensively drug 

resistant TB (XDR-TB) 
4
. The cell wall of 

Mycobacterium tuberculosis is highly complex 

with the majority of the composition is lipid that 

controls the permeability and protectiveness of the 

mycobacterial cell surfac
 5, 6

. The cell wall does not 

permit many compounds to enter inside the cell 

that is a unique characteristic of this bacteria and is 

an important defense mechanism against chemical 

agents
7, 8

. The infection caused by Mycobacterium 

tuberculosis in the inner lung is known as 

pulmonary tuberculosis. The pulmonary 

tuberculosis infection may in turn affect other parts 

of the body like kidney, brain & liver and termed as 

extra-pulmonary tuberculosis that accounts for 

about 15-20% tuberculosis infections reported 

worldwide
9, 10

. Prior to the spread of infection, the 

Mycobacterium tuberculosis stays in the latent 

phase. In this stage, bacteria stay dormant in the 

body tissues without harming the host system. 

However, later it may start growing and cause TB
11, 

12
.  

Despite over a century of research, about one-third 

of the world’s population is infected with TB and 

there are only a few drugs available for the 

treatment of TB
13, 14

. In spite of the widespread use 
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ABSTRACT 
The LipY enzyme is a 437 amino acid protein that belongs to hormone-sensitive lipase family and 
a sub member of PE-PGRS (Pro-Glu - polymorphic CG-repetitive sequences) family of proteins. 
The LipY function helps in survival and functioning of Mycobacterium tuberculosis and has been 
recognized as a target to prevent Mycobacterium tuberculosis infection. The degradation of 
triacylglycerol (TAG) helps in sustainability of LipY protein during dormant stage. It is the key 
receptor protein present in Mycobacterium tuberculosis. This catalytic feature of LipY enzyme 
protein was recognized as better target to prevent an individual from Mycobacterium tuberculosis 
infection. Since, no crystal structure is available in different protein databases. We have started 
our investigation by following systematic approach i.e. homology modeling, compound screening 
and molecular docking. The aim of this study is to screen out the molecules that have higher 
affinity to bind with residues present in LipY active site. In the current work, we report a systemic 
virtual screening for inhibitors of LipY using computational approaches viz. homology modeling, 
shape based screening, molecular docking and fingerprint based clustering. We have identified 
some compounds that have shown good binding with LipY active site. The identified compounds 
were clustered to identify diverse leads. 
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of attenuated live vaccine and several antibiotics, 

the number of TB patients is still increasing
15]

 

Factors like a long period of treatment, poor 

patient’s compliance and the emergence of the drug 

resistant forms have contributed in making TB a 

global epidemic
1, 16, 17

. Therefore new therapeutics, 

with novel mechanism of action, are urgently 

needed to tackle this problem
18

.  

It has been shown that two novel familial proteins 

i.e. PE (proline-glutamic acid) and PPE (proline-

proline-glutamic acid) constitute about 10% of 

Mycobacterium tuberculosis proteome
19, 20

. The N-

terminal domains of these PE and PPE protein 

families contain a large numbers of conserved 

proline and glutamic acid residues
21]

 

LipY, is the lipase enzyme belonging to the 

hormone-sensitive lipase PE family and a sub-

member of PE-PGRS (Pro-Glu - polymorphic CG-

repetitive sequences) family proteins present in the 

Mycobacterium tuberculosis
22]

 The presence of 

LipY receptor on the Mycobacterium tuberculosis 

cell surface pinpoints its essential role in 

interaction with host mechanisms
13

. The cytosol of 

Mycobacterium tuberculosis contains lipid 

inclusion bodies. These bodies are enriched with 

triacylglycerol (TAG) lipids. Under energy 

deprived condition, i.e. during dormant state these 

energy bodies are used for the survival of 

Mycobacterium tuberculosis
23, 24

. The LipY 

possesses TAG hydrolase activity that reactivates 

the pathogen by utilizing the stored TAG
13, 24, 25

. It 

is a key enzyme for increased virulence and 

immunopathogenesis of tuberculosis due to its 

restricted distribution in a few pathogenic species
13, 

25
. It makes LipY an attractive target for therapeutic 

intervention. Strategically, the LipY target can be 

exploited as an important drug target against TB 

infection by inhibiting this reactivation process by 

designing new antimycobacterial compounds.  

Research efforts towards the development of LipY 

small molecule inhibitors are currently gaining 

interest
26, 27, 28

. Recently, Saxena et al. have 

reported the identification of some new Rv3097c-

encoded lipase inhibitors (LipY) that may inhibit 

the growth of Mycobacterium tuberculosis in 

hypoxia
24

. Orlistat is a potential anti-tumor agent, 

since this compound has only be tested on pure 

enzymes and in vitro on cell culture. On the 

contrary, Orlistat is well-known FDA-approved 

anti-obesity drug
29, 30, 31, 32

. The inhibitors reported 

by Saxena et al. were selected as starting points for 

the identification of new drug-like compounds to 

inhibit LipY. 

In the current study, we have performed homology 

modeling, shape based screening of PubChem 

database and docking of the selected compounds to 

identify high-affinity binders of LipY. We have 

reported diverse compounds that can be used 

further for the development of effective LipY 

inhibitors. 

MATERIALS AND METHODS 

Active compounds dataset 

A set of reported compounds (total twelve) active 

against Mycobacterium tuberculosis LipY were 

selected for the current study
24

. All the compounds 

were sketched and geometry optimized by 

minimization up to a gradient of 0.001kcal/mol 

using OPLS2005 forcefield
33

. The so prepared 3D 

structures were used for further studies (figure 1).  

 

Homology modeling of LipY protein 

The LipY is a 437 amino acids length protein. 

Since, there is no three-dimensional crystal 

structure is available for LipY, a 3D homology 

model was prepared for the purpose of the studies. 

The LipY protein sequence (ID: Rv3097c) was 

obtained from Mycobacterium tuberculosis 

database (http://tuberculist.epfl.ch). The BLAST
34

 

search of LipY sequence against protein data bank 

resulted in the identification of X-ray crystal 

structure of a putative esterase from 

Staphylococcus aureus at 2.01 Å resolution (PDB 

ID: 3D7R) as a potential template (query coverage 

45% and identity 28%). The sequence alignment 

was done by PROMALS3D
35 

server using the only 

catalytic domain of LipY sequence and X-ray 

template (figure 2). PROMALS3D performs 

progressive multiple sequence alignment on the 

basis of sequence alignment, 3D constraints and 

available secondary structural homologs of protein. 

The LipY sequence was aligned with the four 

selected species that came from protein BLAST hit 

against Protein data bank database (PDB). These 

species namely Archaeglobus fulgidus, 

Pyrobaculum calidifontis, Staphylococcus aureus, 

Escherichia coli alignment with the LipY sequence 

shown in supplementary figure 1. The homology 

modeling was performed by using Modeller v9.13 

software
36

 The Modeller builds homology models 

using satisfaction of spatial restraints. The 

generated models are then ranked by a probability 

density function (pdf). The pdf score is calculated 

by the stereochemical quality and satisfaction of 

restraints. A total of fifty models were generated 

and the best model was chosen on the basis of 

lowest pdf score as implied in Modeller 9.13. The 

generated 3D homology model is shown in figure 

3. The final modeled protein structure was further 

validated by using RAMPAGE
37

. The best model 

was taken to Schrodinger Prep wizard
38, 39

. The 

correct bond-orders and ionization states were 

assigned; terminals were capped, and heavy atoms 

were minimized up to 0.3 Å RMSD. 

 

Ligand supported refinement of homology 

model 

Interactions between ligand and protein binding 

site residues are the decisive factor for ligand's 

activity. The correct orientation of active site 

residues is essential for the proper interaction 
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between a ligand and a receptor. In this regard, we 

have performed induced fit docking (IFD) where 

constraints were used, to optimize proper fit and 

interactions with conserved residues at the binding 

site. This strategy is expected to enable proper 

receptor-ligand binding interaction that is not 

possible in rigid docking approaches. In recent 

years, this approach has gained considerable 

interest
40-42

. In this step reported most active ligand 

(10) was selected and docked in the generated 

homology model using IFD module in the 

Maestro
43

. Prior to induced fit docking, the 

compound was prepared in LigPrep module. A 

docking grid was generated using a total of sixteen 

active site residues that line the binding pocket. 

These residues are Phe250, Ser248, Leu418, 

Trp415, Leu417, His251, Ser309, Leu385, Asp414, 

Ile412, His413, Asp383, Trp339, Ser337, Pro338 

and Pro384. The choice of using multiple residues 

was done to avoid the bias which may be 

introduced by choosing only one atom e.g. a slight 

misorientation of the side chain may result in 

exclusion of many important residues from the 

docking grid. In these sixteen residues, only few 

residues have shown sequence conservation across 

the species (shown in supplementary figure 1). It is 

found that the residues His251, His413, Trp339, 

Asp383, Ile412, Trp415 are highly conserved in 

which both the histidine residues are identical. 

While, the residues namely Phe338, Ser309 and 

Phe84 are partially conserved. Additionally, one 

hydrogen bond constraint was created between the 

nitrogen atom of Trp339 residue and ligand 

compound as reported by Saxena et al. The IFD 

was performed by keeping other default settings 

and ten complexes were generated. The best-scored 

pose was selected as initial complex for further 

studies (figure 4).  

 

PubChem database retrieval, pre-processing 

and shape based screening 

The PubChem database was downloaded from the 

NIH website (https://pubchem.ncbi.nlm.nih.gov). It 

contains 461937 small compounds and was used 

for the identification of putative inhibitors in this 

study. Each compound in this database is identified 

by a unique identification number (compound ID or 

CID) with information on its structure and 

bioactivity data. The database pre-processing was 

done by OpenEye FILTER program 

(www.eyesopen.com/filter). The filter identifies 

drug-like compounds in a database using several 

parameters e.g. topological, solubility and 

functional group content etc. The FILTER program 

was run with default filter (Filter_drug) settings, 

except for the molecular weight limit that was set 

to 500.  

A total of 167683 compounds were selected that 

were subjected to conformer generation using 

OpenEye OMEGA software
44

. OMEGA performs 

rapid generation of conformation using incremental 

rotation around single bonds, flipping rings and 

double bonds etc. The conformers were generated 

using default settings except the maximum number 

of conformers were set as 400. The conformers 

were then used for the subsequent shape based 

screening approach using vROCS software
45

. Rapid 

Overlay of Chemical Structures (ROCS) is a shape 

based method in which similar compounds are 

identified by overlaying their volumes with query 

compound(s). This approach has the potential to 

identify novel molecular scaffolds considerably 

different from the original query compounds. Out 

of reported active compounds, four diverse 

compounds (1, 2, 7 & 10) were selected as 

representative of the actives and used for shape 

based screening. It is observed that all the reported 

compounds have similar core structures. The major 

difference comes with the side chains. Therefore, in 

these compounds three were omitted because of 

very less activity (6, 9 and 12). From the remaining 

7 compounds we have selected four based on the 

diversity of the side chains. The diverse compounds 

were chosen to get the consensus pharmacophore 

and shape for the screening. These selected 

compounds were imported in vROCS ligand model 

builder to generate shape grid. The compounds 

were superimposed, and pharmacophoric features 

generated using colour forcefield in vROCS query 

building interface. The generated query was used to 

screen the generated conformers. The compounds 

were ranked by TanimotoCombo score as implied 

in ROCS. 

 

Docking of the compounds 

Top-ranked 10000 compounds from vROCS were 

docked in the active site of the LipY homology 

model using software Glide in standard precision 

(SP) mode
46

. The refined LipY homology model 

was imported into Maestro module of Schrodinger 

where a grid was generated using the previously 

docked compound (10). The docked ligands were 

ranked by the GlideScore as implied in Glide. A 

survey of literature revealed that many different 

cutoffs have been used for the docking score 

(GlideScore staring from -4.0 kCal/Mol) in the 

virtual screening studies. Since, we wanted to 

select the molecules with a good binding affinity 

therefore; we chose a somewhat strict cutoff. A 

cutoff -7.0 kcal/mol was used to select ligands for 

further studies. 

 

Binding affinity estimation using MM/GBSA 

The binding free energy estimation was done using 

the molecular mechanics generalized born surface 

area (MM/GBSA) approach. MM/GBSA is a 

computationally more efficient method as 

compared to other similar methods e.g. MM/PBSA, 

thermodynamic integration (TI) and free energy 

perturbation (FEP). MM/GBSA allows for rigorous 
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free energy decomposition into contributions from 

different groups of atoms or types of interaction. 

The binding free energy (ΔG) between a ligand (L) 

and a receptor (R) in forming the complex (RL) is 

calculated as: 

ΔG = ΔH- TΔS ≈ ΔEMM+ Δgsol-TΔS 

Where, ΔEMM, Δgsol and ΔS denote the change in 

gas phase molecular mechanics (MM) energy, 

solvation free energy, and the conformational 

entropy upon binding respectively. 

The selected docked poses (total 9812) were re-

scored using MM/GBSA as implied in Schrodinger 

suite
47

 using a partially flexible receptor where 

residue within 5 Å of the ligand were considered 

flexible. 

 

Identification of diverse scaffolds 

The selected compounds were classified and 

clustered on the basis of their chemical diversity. 

The clustering of compounds was done using 

scaffold hunter
48

. The Scaffold hunter uses scaffold 

tree or hierarchical clustering scheme for common 

scaffold identification. Here, compound datasets 

can be imported and different fingerprints like 

DaylightBitFingerprinter, EStateBitFingerprinter 

and EstateNumericalFingerprinter can be used for 

clustering of compounds. The compounds with 

common scaffold can be grouped together and 

represented in the form of a tree, table, clusters or 

dendrogram. This mapping of chemical properties 

enables the user to understand the diversity and 

identify the representative ligand from each cluster. 

We have selected diverse compounds from 

identified hits. The flowchart of the virtual 

screening is shown in figure 5. 

 

RESULTS AND DISCUSSION 

Validation of homology based LipY model 

The modeled structure of LipY consists of 8-beta 

strands and five alpha helices similar to the 

template. The modeled structure was verified for 

stereochemical quality using Ramachandran plot 

(figure 6). In the plot, ~94.7% residues were in the 

favoured region, 3% residues were in allowed 

regions and only 2.3% residues were outliers. We 

have validated the modeled structure using multiple 

criteria. The structures were superimposed and we 

find a negligible RMSD of 0.285 between the 

model and template. The placement and orientation 

of the side chains was indeed worked into, in the 

refinement stage. The overall orientation and 

interactions of the ligand, matches with that 

reported molecules by Saxena et al. It suggests that 

the modeled LipY structure is of good 

stereochemical quality and can be used for further 

analysis. Moreover, all the active molecules were 

docked in the active site of the LipY homology 

model. The model was able to differentiate between 

highly active and inactive molecules. The average 

MM/GBSA score for the inactive molecules was -

52.60 while that of the active molecules was -

73.28. (Supplementary Table 1) 

 

Docking and Virtual Screening 

The reported most active inhibitor (10) was used to 

dock in the modeled LipY protein using IFD. The 

best conformation was selected based on docking 

score and interactions with important residues. It 

can be seen from figure 4 that the compound settles 

well in the active site of LipY protein. It is making 

three hydrogen bonds with Ser309, Trp339 and 

Asp414. It is important to note that the Ser309 is 

the catalytic residue responsible for the 

nucleophilic activity of the active site in 

combination with His413 and Asp383 and is a part 

of conserved motif (GDSAG) in LipY 
22

. The 

hydrophobic dichloro ring settles well in the cavity 

lined by residues Leu170, Phe174, Ile412, Leu417, 

and Leu418. The quinolone ring is sitting in a 

cavity lined by Trp339, Pro180, Leu181 and 182 

and Thr344. The docking score for the best binding 

pose was found to be -8.4 kcal/mol. The overall 

orientation and interactions of the ligand, matches 

with that reported molecules by Saxena et al. The 

so generated conformation of the active site was 

used later for docking based virtual screening. The 

docked pose of most active ligand was grouped 

with other three structurally diverse compounds 

from the actives. These four compounds were 

structurally superimposed on the basis of 

compounds shape and 3D chemistry using vROCS 

tool (figure 7). The generated active ROCS shape 

query was used for whole PubChem database 

screen. Finally, the screened database consists of 

10,000 compounds were docked using a hydrogen 

bond constraint of Trp339 and top compounds were 

screened out on the basis of GlideScore. It is 

important to note that, the residue Asp414 is not a 

conserved residue while Trp339 is conserved 

(hydrophobic position). Therefore only Trp339 was 

used as constraint for the docking of all 

compounds. The compounds with docking score of 

-7.0kcal/mol and better were retained. These 

compounds were subjected to MM/GBSA binding 

affinity calculation by keeping all residues flexible 

within a distance of 5 Å. The compounds showing 

binding affinity, less than -80kcal/mol were filtered 

out. As a result, a total of 143 compounds (~top 

20%) were selected for further analysis (figure 8). 

 

Identification of diverse hits 

In any virtual screening study, it is paramount to 

identify diverse hits. The advantage of having 

diverse hits is that if one compound fails in later 

stages (i.e. animal testing, pharmacokinetics) other 

leads can be immediately pursued. In the current 

study, the compounds were clustered using 

structural fingerprints to identify diverse hits. This 

approach has the potential to effectively locate the 

diverse scaffolds in the initial hits. The lead 
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compounds from each cluster representing a pool 

can be selected. In this analysis, fingerprints were 

generated for the selected 143 compounds using 

EStateBitFingerprinter. Compounds were then 

classified on the basis of their fingerprint and 

number of rings present in each compound. A total 

of forty two clusters were identified. A scaffold tree 

was generated showing the clustered scaffolds 

(figure 9). A representative compound was selected 

from each cluster on the basis of high MM/GBSA 

binding affinity score. Thus, total forty-two diverse 

hits were selected. The structures and MM/GBSA 

binding energy estimates for these compounds, are 

shown in Supplementary figure 2. The docking of 

top five compounds based on MM/GBSA score are 

shown in figure 10 and Supplementary Table 2. 

 

 

 

 
Fig. 1: The figure depicts the 2D representation of structure and activities of reported active 

compounds. Where each molecule is shown with its IC50 values below them. The squared black 
boxes indicates the four selected diverse molecules for the virtual screening 
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Fig. 2: The sequence alignment of template (PDB ID: 3D7R) and target sequence (LipY). The colour 

code indicates Blue – A, L, F, I, W, V, M (hydrophobic residues), Pink – E, D (negatively charged 
residues), Yellow – P (Non-polar), Red – R, K (positively charged residues), Gray – G, Green – S, Q, 

T, N (Polar residues), Sky blue – Y, H (aromatic residues) 
 

 
Fig. 3: The cartoon representation of homology modeled structure of LipY protein. The helix, 

sheets and loops are coloured in red, yellow and green respectively using pymol 
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Fig. 4: The active site of the refined homology model was shown. Where, the ligand is shown in 
green sticks. The hydrogen bonds between ligand and active site residues are shown as pink 

dotted lines while active site residues are shown in white colour 

 
 

 
Fig. 5: The schematic representation of the overall workflow used during the entire process of 

docking and virtual screening of PubChem database 
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Fig. 6: The structure validation of the modeled protein for LipY target using Ramachandran plot. 
The residues in most favoured region (Red colour), the residues in allowed region (Yellow colour) 

and the residues in dis-allowed region (white colour). All residues are shown in circle except glycine 
in triangle 

 

 
Fig. 7: The figure depicts the generated shape query using vROCS. The red and blue colour rings 
indicates acceptor and donor regions respectively. While, green colour indicates aromatic rings 
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Fig. 8: The plot of MM/GBSA score vs. number of compounds. Highest scoring compounds (under 

red square) were selected for further analysis. The average binding energy and percentage 
molecules were shown in black dashed line 

 
 

 
Fig. 9: The tree represents the scaffold analysis of 143 compounds by using Scaffold hunter. Dark 

circles indicate individual molecule whereas red circles indicate selected representative molecule 
from each cluster 
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Fig. 10: The docking of top five compounds with its compound ID inside the protein active site is 
shown. The active site residues are shown in sphere with different colour as per the amino acid 

type while type of interaction is also shown in different colour 
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Supplementary figure 1: The multiple sequence alignment of the selected five diverse species. The 

rectangular box indicates the conservation of sixteen active site residues in all species. 

 

 
 
Supplementary figure 2: The 2D view of total 42 representative compounds from each cluster with 

respective PubChem ID and MM/GBSA score. 
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Supplementary Table 1: The table represents the active and inactive molecules in cyan and pink 
colour. The average MM/GBSA score for the active and inactive molecules is -73.28 & -52.60. The 

average docking sore for the active and inactive molecules is -7.0 and -6.8 

S. No. 
Compound 

Name 
Gscore 

(kcal/mol) 
MM/GBSA 
(kcal/mol) 

IC50 value (μM) 

1 8e -6.929 -59.4 100 
2 8j -6.740 -59.1 100 
3 8k -6.774 -39.3 50 
4 6a -7.386 -88.8 25.00 
5 8g -6.001 -77.3 18.00 
6 8b -6.756 -59.6 12.50 
7 8c -8.043 -78.8 12.50 
8 8d -8.495 -60.0 9.25 
9 8h -7.073 -58.9 9.25 

10 8f -6.520 -70.1 8.25 
11 8a -7.676 -72.97 7.75 
12 8i -6.383 -56.5 5.13 
13 Orlistat -5.589 -109.8 1.50 

 
Supplementary Table 2: The PubChem CID, Glide docking score  

and MM/GBSA score of top five compounds 
S. No. Compound ID Glide score (kcal/mol) MM/GBSA (kcal/mol) 

1. 5339374 -7.46 -121.06 
2. 16028710 -7.33 -117.94 
3. 530193 -7.12 -117.45 
4. 5310183 -7.50 -117.41 
5. 3232996 -7.83 -116.55 

 
CONCLUSIONS 

The present work was carried out to identify novel 

compounds that may inhibit LipY protein and play 

a significant role in Mycobacterium tuberculosis 

infection. In this study, we have used systematic 

virtual screening approach i.e. homology modeling, 

virtual screening and induced fit molecular docking 

approach for the identification of plausible hits. A 

total of 461,937 compounds from PubChem 

database were screened, and 42 compounds were 

identified. These new class of compounds can be 

used as novel antagonists against LipY receptor. 

Our model was able to discriminate between highly 

active and inactive molecules. Thus we can say that 

these set of molecules and the designed model can 

be used for virtual screening studies. 
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