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INTRODUCTION 

Insulin is a 51-amino acid polypeptide. It has 2 
chains-A and B. A-chain consists of 21 amino 
acids while B-chain consists of 30 amino acids. 
Both chains are linked by disulphide bonds.In 
mammals, insulin is synthesized in the pancreas 
within the β-cells1-3 of the islets of Langerhans.4-

9 One million to three million islets of 
Langerhans (pancreatic islets) form the 
endocrine part of the pancreas, which is 
primarily an exocrinegland. The endocrine 
portion accounts for only 2% of the total mass of 
the pancreas. Within the islets of Langerhans, 
beta cells constitute 65–80% of all the cells. 
It is however first synthesized as a single 
polypeptide called preproinsulin10 in pancreatic 
β-cells. Preproinsulin contains a 24-residue 
signal peptide11 which directs the nascent 
polypeptide chain to the rough endoplasmic 
reticulum (RER).12-15The signal peptide is 
cleaved as the polypeptide is translocated into 
lumen of the RER, forming proinsulin. In the 
RER the proinsulin folds into the correct 
conformation and 3 disulfide bonds are formed. 
About 5–10 min after its assembly in the 

endoplasmic reticulum, proinsulin is 
transported to the trans-Golgi network (TGN) 
where immature granules are formed. 
Transport to the TGN may take about 30 
min.Proinsulin16undergoes maturation into 
active insulin through the action of cellular 
endopeptidases known as prohormone 
convertases (PC1 and PC2), as well as the 
exoprotease carboxypeptidase E. The 
endopeptidases cleave at 2 positions, releasing a 
fragment called the C-peptide,17-20 and leaving 2 
peptide chains, the B- and A- chains, linked by 2 
disulfide bonds. The cleavage sites are each 
located after a pair of basic residues (lysine-64 
and arginine-65, and arginine-31 and -32). After 
cleavage of the C-peptide, these 2 pairs of basic 
residues are removed by the carboxypeptidase. 
The C-peptide is the central portion of 
proinsulin, and the primary sequence of 
proinsulin goes in the order "B-C-A" (the B and 
A chains were identified on the basis of mass 
and the C-peptide was discovered later).The 
resulting mature insulin is packaged inside 
mature granules waiting for metabolic signals 
(such as leucine, arginine, glucose and mannose) 
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and vagal nerve stimulation to be exocytosed 
from the cell into the circulation. 
The endogenous production of insulin is 
regulated in several steps along the synthesis 
pathway 

• At transcription21-27from the insulin 
gene28-31- 

• In mRNA stability 
• At the mRNA translation 
• In the posttranslational modifications. 

 
Insulin and its related proteins have been shown 
to be produced inside the brain, and reduced 
levels of these proteins are linked to Alzheimer's 
disease.  
Insulin is stored in pancreas as its biological 
precursor proinsuilin, which is a single chain 
polypeptide that is cleaved by proteolysis on 
demand to form insulin, with C-peptide as one of 
the byproduct. Insulin is stored in granules in β 
cells of islets of langerhans and consists of two 
atoms of Zn and six molecules of insulin. 
The amino acid sequence of human proinsulin is 
shown in Fig.3. By proteolytic cleavage, four 
basic amino acids (residues 31, 32, 64, 65) and 
the connecting peptide are removed, converting 
proinsulin to insulin. The sites of action of the 
end peptidases PC2 and PC3 are shown.  
Insulin is usually administered to diabetic 
patients through subcutaneous injection. 
However, problems encountered with 
subcutaneous insulin injections are pain, allergic 
reactions, hyperinsulinemia and insulin 
lipodystrophy around the injection site.32 Oral 
route is the most convenient33-34 and 
comfortable means of administering protein 
drugs35 and eliminates pain caused by an 
injection, stress associated with multiple daily 
injections such as needle anxiety36 and possible 
infections.37 Indeed, insulin absorbed by the 
intestinal epithelium reaches the liver through 
the portal vein and can directly inhibit hepatic 
glucose output7; subcutaneous insulin treatment 
however does not replicate the normal 
dynamics of endogenous insulin release, 
resulting in a failure to achieve a lasting 
glycemic control in patients 38-39. However, 
peptides and proteins such as insulin cannot be 
administered via the oral route. This is due to 
degradation by gastrointestinal enzymes and 
poor permeability across intestinal mucosa.40-

42The oral bioavailability of most peptides and 
proteins therefore is < 1%. The challenge here is 
to improve bioavailability to anywhere between 
30-50%.43To prevent these problems, many 
protease inhibitors and surfactants were used in 
insulin formulations. However, protease 
inhibitors also prevent digestion of important 
nutrients present in the food.34, 43Similarly, 

surfactants irritate the protective mucous 
membrane leads to passage of unwanted toxins 
and pathogens.  34, 43. Insulin is better absorbed 
from the ileum and large intestine as compared 
to the jejunum.44Thus a polymer that would 
release the drug in ileum or upper intestine has 
the potential for oral insulin delivery.  
Eudragit is trademark of Rohm GmbH & Co. KG. 
Darmstadt in Germany, first marketed in 1950s. 
Eudragit prepared by the polymerization of 
acrylic and methacrylic acids or their esters, e.g., 
butyl ester or dimethylaminoethyl ester. 
Eudragit introduced in USPNF, BP, PhEur, Hand 
book of pharmaceutical excipients45 
 

 
 

Colon Anatomy 

The GI tract is divided into stomach, small 
intestine and large intestine. The large intestine 
extending from the ileocecal junction to the anus 
is divided in to three main parts. These are the 
colon, the rectum and anal canal.46The entire 
colon is about 5 feet (150 cm) long, and is 
divided in to five major segments. Peritoneal 
folds called as mesentery which is supported by 
ascending and descending colon. The right colon 
consists of the cecum, ascending colon, hepatic 
flexure and the right half of the transverse colon. 
The left colon contain the left half of the 
transverse colon, descending colon, splenic 
flexure and sigmoid. The rectum is the last 
anatomic segment before the anus.47 

The major function of the colon is the creation of 
suitable environment for the growth of colonic 
microorganisms, storage reservoir of fecal 
contents, expulsion of the contents of the colon 
at an appropriate time and absorption of 
potassium and water from the lumen48. The 
absorptive capacity is very high, each about 
2000ml of fluid enters the colon through the ileo 
cecal valve from which more than 90% of the 
fluid is absorbed. On average, it has been 
estimated that colon contains only about 220 gm 
of wet material equivalent to just 35 gm of dry 
matter. The majority of this dry matter is 
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bacteria. The colon tissue containing the villi, 
lymph, muscle, nerves, and vessels. 
 

 
 

 
Fig. 3: Human Proinsulin and its conversion 

to insulin 

 

EUDRAGIT®L 100 

It is an anionic polymer synthesized from 
methacrylic acid and methylmethacrylate and 
have a pH-dependent solubility. Eudragit L 
100would release the drug in the region of G.I.T.  
of pH 6-6.5 i.e. ileum or large intestine. 34 It is 
available as an organic solution (Isopropanol), 
solid or aqueous dispersion. 
 
Physical properties 

It is a solid substance in form of a white powder 
with a faint characteristic odour. 
 

 

 

 

 

 

 

 

Chemical structure 
 

 
Fig. 4: Structure of Eudragit® L 100 

 

Product  Form 

Powder  
Targeted Drug Release Area 

jejunum  
Dissolution 
Dissolution between pH 6.0 and 7.0. 
 
Characteristics 

• Effective and stable enteric coatings 
with a fast dissolution in the upper 
Bowel  

• Granulation of drug substances in 
powder form for controlled release  

• Site specific drug delivery in intestine 
by combination with EUDRAGIT® S 
grades 

• Variable release profiles. 
                     

Chemical/IUPAC name 

Poly (methacylic acid-co-methyl methacrylate) 
1:1  
INCI name 

Acrylates Copolymer 
Monographs 

Ph. Eur 

Methacrylic Acid - Methyl Methacrylate 
Copolymer (1:1) 
USP/NF 

Methacrylic Acid Copolymer, Type A - NF 

JPE 

Methacrylic Acid Copolymer L  
Weight average molar mass 

approx. 125,000 g/mol 
Acid Value 
315 mg KOH/ g polymer 
Glass Transition Temperature (Tg)  

>130°C (+/- 5°C) 
 Viscosity / Apparent viscosity 

60 - 120 mPa. s 
Refractive index 

1.390 - 1.395  
Relative density 

0.831-0.852 
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The suitability of Eudragit L 100 
microspheresasoral carrier forpeptide drugs 
like insulin was evaluated. Insulin loaded 
EudragitL100 microsphereswere prepared 
using water-in-oil-in water (w/o/w) emulsion-
solvent evaporation with polysorbate 20 as 
dispersing agent in internal aqueous phase and 
PVP/PVA as stabilizer in the  external aqueous 
phase. In PBS pH 7.4, microspheres showed an 
initial burst release of 21% in 1 hr. and 
additional 35% release in next 5 hr. Thus, 
EudragitL100 microspheres have the potential 
to serve as an oral carrier forpeptide drugs like 
insulin.34 

 

EUDRAGIT®S 100 

It is an anionic copolymer based on methacrylic 
acic and methyl methacrylate.It is available only 
as an organic solution (Isopropanol) and solid. 
 
Physical properties 

It is a solid substance in form of a white powder 
with a faint characteristic odour. 
 
Chemical structure 

 
Fig. 5: Structure of Eudragit® S 100 

 

Form of Product 

Powder  
Targeted Drug Release Area 

Colon delivery  
Dissolution 

Above pH 7.0 
Characteristics 

• Granulation of drug substances in 
powder form for controlled release  

• Effective and stable enteric coatings 
with a fast dissolution in the upper 
Bowel  

• Site specific drug delivery in intestine 
by combination with EUDRAGIT® S 
grades  

• Variable release profiles 
 
Chemical/IUPAC name 

Poly(methacylic acid-co-methyl methacrylate) 
1:2 
INCI name 

Acrylates Copolymer 

Monographs 
Ph. Eur. 

Methacrylic Acid - Methyl Methacrylate 
Copolymer (1:2) 
USP/NF 

Methacrylic Acid Copolymer, Type B - NF  
JPE 

Methacrylic Acid Copolymer S  
Weight average molar mass 

approx. 125,000 g/mol  
Acid Value 

190 mg KOH/ g polymer 
Glass Transition Temperature (Tg) 

>130°C (+/- 5°C) 
Viscosity / Apparent viscosity 

50 - 200 mPa. S 
Refractive index 

1.390 - 1.395  
Relative density 

0.831-0.852 
EudragitS100 microspheres have the potential 
to serve as an oral carrier forpeptide drugs like 
insulin. Insulin loaded PVA stabilized 
EudragitS100 microspheres showed maximum 
drug encapsulation released 2.5% insulin at pH 
1.0 in 2 hr. Oral administration of PVA stabilized 
microspheres in normal albino rabbits 
(equivalent to 6.6 IU insulin/kg of animal 
weight) demonstrated a 24% reduction in blood 
glucose level, with maximum plasma glucose 
reduction of 76 ± 3.0% in 2 hours and effect 
continued upto 6 hr.43 
The hypoglycemic effect of Eudragit S100 
enteric-coated capsules containing sodium 
salicylate as an absorption promoter formulated 
with insulin in various ways: as physical 
mixture, by wet granulation or in suppository 
bases (polyethylene glycol 4000 or Witepsol 
W35) was studied in hyperglycemic beagle dogs. 
25-30% reduction in plasma glucose levels and  
relative hypoglycemia (RH) of about 12.5% 
relative to subcutaneous injection of regular 
soluble insulin can be achieved by formulating 
insulin in Witepsol W35 (1 g) with sodium 
salicylate (50 mg) as an absorption promoter, 
reducing the resulting mass into particle size 
180-315 microm, packing into hard gelatin 
capsules and coating with Eudragit S100.33 

 

EUDRAGIT®S 12,5 

It is an anionic copolymer based on methacrylic 
acic and methyl methacrylate. 
 
Physical properties 

It is a colourless and clear to slightly cloudy 
liquid with the characteristic odour of isopropyl 
alcohol. 
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Chemical structure 

 
Fig. 6: Structure of Eudragit® S 12.5 

 

Product Form 

Organic Solution 12.5%  
Targeted Drug Release Area 

Colon Delivery 
Dissolution 

Above pH 7.0 
Characteristics 

• Granulation of drug substances in 
powder form for controlled release  

• Effective and stable enteric coatings 
with a fast dissolution in the upper 
Bowel  

• Site specific drug delivery in intestine 
by combination with EUDRAGIT® S 
grades  

• Variable release profiles 
 
Chemical/IUPAC name 

Poly(methacylic acid-co-methyl methacrylate) 
1:2 
 INCI name 

Acrylates Copolymer 
Monographs 
Ph. Eur 

Methacrylic Acid - Methyl Methacrylate 
Copolymer (1:2) 
USP/NF 

Methacrylic Acid Copolymer, Type B – NF 
JPE 

n/a 
Weight average molar mass 

approx. 125,000 g/mol  
Acid Value 

190 mg KOH/ g polymer 
Glass Transition Temperature (Tg) 

>130°C (+/- 5°C) 
 

EUDRAGIT® FS 30 D 

It is an aqueous dispersion with 30 % dry 

substance. EUDRAGIT
® 

FS 30 D is the aqueous 
dispersion of an anionic copolymer based on 
methyl acrylate, methyl methacrylate and 
methacrylic acid. It is insoluble in acidic media, 
but dissolves by salt formation above pH 7.0. 
Apart from its enteric properties, its dissolution 

at a higher pH value allows targeted colon 
delivery. 
 

Chemical structure 

 
Fig. 7: Structure of Eudragit® FS 30 D 

 

Chemical/IUPAC name 

Poly(methyl acrylate-co-methyl methacrylate-
co-methacrylic acid) 7:3:1  
INCI name: Acrylates Copolymer 
Acid Value 

70 mg KOH/ g polymer 
Minimum Film Forming Temperature (MFT) 

~14°C  
Glass Transition Temperature (Tg) 

43°C (+/- 5°C) 
The ratio of the free carboxyl groups to the ester 
groups is approx. 1:10. It is milky-white liquid of 
low viscosity with a faint characteristic odour. 
The monomers are randomly distributed along 
the copolymer chain. The weight average molar 
mass (Mw) of EUDRAGIT® FS 30 D is approx. 
280,000 g/mol. 
The dispersion is miscible with water in any 
proportion, the milky-white appearance being 
retained. A clear or slightly cloudy, viscous 
solution is obtained by mixing 1 part 
EUDRAGIT® FS 30 D with 5 parts acetone. The 
same results are obtained by mixing with 
ethanol or isopropyl alcohol; initially, the 
polymer is precipitated, but then dissolves again 
in the excess organic solvent.  
A clear or slightly cloudy liquid is obtained by 
mixing 1 part EUDRAGIT® FS 30 D with 2 parts 
1 N sodium hydroxide. 
 
Dissolution 

Above pH 7.0 
Viscosity / Apparent viscosity 

Max. 20 mPa .s 
pH: 2.0 - 3.5 
Relative density 

1.058 - 1.068 

Monomers 

Max. 100 ppm 
 
Sample solution 

Dissolve approximately 11.0 g of EUDRAGIT
® 

FS 
30 D accurately weighed in acetone p.a. and 
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dilute to 50.0 ml. Add 5.0 ml of the solution drop 
wise to 20 ml of a 70 % solution of methanol for 
chromatography in phosphoric acid pH 2 (adjust 
an appropriate volume of water with 
phosphoric acid 85 % to pH 2). Centrifuge until 
the supernatant is clear and use the supernatant 
solution as the sample solution. 
 

Storage and handling  

Store between 5 °C and 10 °C. Protect from 
freezing. Keep in well closed containers.  
Avoid contamination during sampling. 
Containers that have been opened for use 
should be closed again immediately and the 
content used up within the next few weeks. 
Matrix systems with EUDRAGIT® FS 30 D will 
release 100% of the drug. Polymer amounts of 
10 to 20 % are sufficient to get a pH-
independent matrix.  
 
EUDRAGIT® L 12,5 

It is solution of EUDRAGIT® L 100 with 12.5% 
(w/w) dry substance in aqueous Isopropyl 
Alcohol Ph. Eur. / USP. The solution contains 3% 
(w/w) deionised water. The product contains 
0.3 % Sodium Lauryl sulfate Ph. Eur. / NF on 
solid substance.  
EUDRAGIT® L 100 is described as Copolymer 
(1:1), Type A or Copolymer L in the 
monographs. 
It is colourless, clear to slightly cloudy liquids 
with the characteristic odour of isopropyl 
alcohol. 
 

Chemical structure 

 
Fig. 8: Structure of Eudragit® L 12,5 

 

Dissolution 

Dissolution between pH 6.0 and 7.0 
Storage  
Protect from warm temperatures (USP, General 
Notices). Store in tightly closed containers. 
Monomers 

Max. 70 ppm 
Viscosity / Apparent viscosity 

60 – 120 mPa .s 
Refractive index 

1.390 - 1.395 
Relative density 

0.831 - 0.852  
It provides effective and stable enteric coatings 
with a fast dissolution in the upper Bowel and 
site specific drug delivery in intestine by 
combination with EUDRAGIT® S grades. 

Table 1: Dissolution properties of enteric Eudrgit polymers 
EUDRAGIT® polymer Product form Dissolution properties 

Eudragit L 100 Powder Dissolution above pH 6.0 
Eudragit S 100 Powder Dissolution above pH 7.0 

Eudragit  S 12,5 12.5 % organic solution Dissolution above pH 7.0 

Eudragit FS 30 D 30 % aqueous dispersion Dissolution above pH 7.0 
Eudragit L 12,5 12.5 % organic solution Dissolution above pH 6.0 

 

Glass transition temperature (Tg) 

The glass transition temperature is an important 
factor for describing the physical properties of 
polymers. On a macroscopic level it describes 
the solidification of an anisotropic polymer melt. 
The glass transition temperature has far-
reaching consequences, e.g. for film formation, 
melt processing and storage of finished 
pharmaceutical dosage forms. Plasticizers, 
solvents or residual solvents (including water) 
that act as plasticizers usually cause a reduction 
in glass transition temperature, which is 
specifically exploited in application 
formulations. Most common plasticizer for 
EUDRAGIT polymers is triethyl citrate (TEC). 
 

 

 

Effect of Plasticizers Compatibility 

Polymers with high glass transition 
temperatures need plasticizer to obtain coatings 
which are not brittle. For example: Eudragit® L 
100 in organic solution needs 10% Triethyl 
citrate (TEC). Dispersions from Polymers with 
high glass transition temperatures needs 
plasticizer to decrease the minimum Film-
Forming Temperature and to optimize the film 
formation. For example: Redispersed Eudragit® 
L 100 needs 50% Triethyl citrate (TEC). 
Glass transition temperature (Tg) 
measurements of polymers are conventionally 
conducted in the dry state with little attention to 
the environment they are designed to work in. 
Hence, a novel use of dynamic mechanical 
analysis (DMA) to measure the Tg of enteric 
polymethacrylic acid methylmethacrylate 
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(Eudragit L and S) polymer films were 
formulated with a range of plasticizers for 
measuring Tg of polymer films in the wet state. 
This allows better prediction of polymer 
behavior in vivo conditions49. 
A colon-specific drug delivery technology was 
designed to avoid the inherent problems 
associated with pH- or time-dependent systems. 
In this regard, Eudragithave severed to be a 
much better enteric coated polymer. There have 
been several studies where formulations have 
been enteric coated with different grades of 
Eudragits exploitingeither time, pH- dependent 
or microbial degradation mechanisms for 
targeting colonic release. 
 

MICROPARTICLES 

The microencapsulation process in which the 
removal of the hydrophobic polymer solvent, 
achieved by evaporation has been widely 
reported in recent years for the preparation of 
microspheres and microcapsules. The 
encapsulation of highly water soluble 
compounds including proteins and peptides 
presents formidable challenges to the 
researcher. The successful encapsulation of such 
entities requires high drug loading in the 
microspheres, prevention of protein 
degradation by the encapsulation method. To 
achieve these goals, solvent evaporation 
techniques and their innovative modifications 
have been attempted.  
 
Different techniques of microencapsulation are 
1.Single or multiple emulsion solvent 
evaporation (O/W, W/O, W/O/W). 
2. Multiple emulsion system. 
3. Double emulsion solvent evaporation. 
4. Coacervation method. 
 

 
a) 

 

 
b) 

Fig. 9: SEM micrographs of optimized insulin 

loaded a) Eudragit S 100 b) Eudragit L 100 

ENCAPSULATION OF POORLY WATER 

SOLUBLE DRUGS 

Basic Drugs 

Poorly water soluble basic drugs are very 
sensitive to pH changes and their dissolution in 
the acidic stomach environment tends to 
precipitate them upon gastric emptying, which 
leads to compromised or erratic oral 
bioavailability. The oral bioavailability of such 
drugs can be 
improved by encapsulation of drug within 
highly pH responsive Eudragit L microparticles 
using emulsion solvent evaporation method.50 
 

Acidic Drugs 

Sometimes, acidic drug encapsulated by 
emulsion solvent evaporation, are present in its 
crystalline form, which can affect drug release 
and produce negative impact on other 
characteristics of the final product. Henceforth, 
investigations were carried out to find factors 
that are responsible for the formation and 
inhibition of drug crystals in modified-release 
microparticles using Eudragit S or Eudragit L. It 
was concluded that the drug crystallization can 
be inhibited by optimizing the ratio of drug to 
polymer in the microparticles there by 
stabilizing this acidic drugs for drug delivery51. 
 
Water Soluble Drugs 

Generally, highly water-soluble and poorly 
bioavailable drugs are unstable at gastric pH. 
Hence, to resolve this problem mucoadhesive 
microparticles were formulated using Eudragit 
S100 and EC using w/o/o double emulsion 
solvent diffusion method. Microparticles made 
with drug: Eudragit S100 (ratio 1:3) exhibited 
maximum entrapment efficiency and followed 
fickian diffusion with delayed release.52The 
efficacy of microencapsulation process is 
dependent on many factors, including organic 
solvent, rate of solvent removal, and amount of 
organic solvent or drug solubility, drug to 
polymer ratio, partition coefficient, polymer 
composition and molecular weight, and method 
of manufacture. These variables must be 
considered in order to develop a successful 
controlled release microsphere containing 
drugs. Properties such as relative contribution 
of microsphere size and drug's molecular weight 
and acid solubility, on the extent of such 
undesired release in gastric pH have been 
highlighted. Microparticles were formulated 
using a novel polymer. The multiple regression 
of microparticles formulated using Eudragit S 
and Eudragit L by emulsion solvent evaporation 
process revealed that the drug's molecular 
weight was the most important factor that 
determined its extent of release in the acid 
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medium, while its acid solubility and 
microsphere's size had minor influences.53 
 

ENHANCEMENT OF PROTEIN STABILITY 

Purpose of such an approach was to formulate a 
stable formulation for proteins and peptides 
which are susceptible to denaturation, 
degradation, and conformational changes which 
render them inactive. Amongst the pioneering 
works in this regard, an oral colonic targeted 
heparin dosage form was fabricated, allowing 
the release of Low molecular weight heparins 
(LMWH) directly in the inflamed tissue using 

pH-sensitive microspheres of Eudragit P 4135 F 
by double emulsion technique54, 55 
 
COMBINATIONOF EUDRAGIT L 100 and 

EUDRAGIT S 100  

Studies in human volunteers have confirmed 
that pH drops from 7.0 at terminal ileum to 6.0 
at ascending colon, and Eudragit S based 
systems sometimes fail to release the drug. To 
overcome the shortcoming, combination of 
Eudragit S and Eudragit L which ensures drug 
release at pH < 7 has been advocated.56

 
 

      
a)                                                   b) 

Fig. 10  SEM micrographs of optimized bovine insulin loaded a) chitosan and 

Eudragit L 100: Eudragit S100 (1:1) microparticles b) PLGA and 

Eudragit L 100:  Eudragit S100 (1:1) microparticles 

 

Table 2: Characterization of insulin loaded microparticles using Chitosan and different 

concentrations of Eudragit L 100, Eudragit S 100 and Eudragit L 100 : Eudragit S 100 (1:1)     

Formulation 

Code 

Actual 

Loading 

(μg/mg) 

Actual 

Loading 

(%) 

%EE 
Particle Size 

(d.nm) 

Zeta 

Potential 

(mV) 

HSB I 10.267 1.026 44.14 4732 -27.5 
HSB II 8.836 0.883 48.59 5756 -18.1 
HSB III 9.601 0.960 64.32 4351 -20.1 
HSB IV 9.945 0.994 78.56 5991 -15.7 
BSB I 11.404 1.140 49.04 2912 -34.3 
BSB II 13.693 1.369 75.31 3748 -19.4 
BSB III 11.653 1.165 78.07 8458 -25.4 
BSB IV 10.493 1.049 82.90 6891 -21.2 
HLA I 10.832 1.083 46.58 7353 -28.6 
HLA II 12.388 1.238 68.13 6344 -13.3 
HLA III 10.919 1.091 73.16 3439 -33.5 
HLA IV 9.281 0.928 73.32 4147 -39.8 
BLA I 16.875 1.687 72.64 4484 -23.7 
BLA II 14.397 1.439 79.18 7747 -30.9 
BLA III 12.029 1.203 80.59 8225 -27.8 
BLA IV 11.124 1.112 87.88 5275 -22.4 
HLSY I 9.307 0.930 40.02 1238 -31.7 
HLSY II 8.230 0.823 45.26 3943 -42.3 
HLSY III 10.382 1.038 69.55 6696 -36.1 
HLSY IV 11.880 1.188 93.85 3363 -47.4 
BLSY I 11.496 1.149 49.43 6771 -16.1 
BLSY II 10.846 1.084 59.65 9045 -34.7 
BLSY III 11.369 1.136 80.29 4651 -37.2 
BLSY IV 10.881 1.088 85.96 9238 -26.8 
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Abbreviations 
HSB I Human insulin loaded microparticles using Chitosan and 3% w/v Eudragit S 100 

HSB II Human insulin loaded microparticles using  Chitosan and 4% w/v Eudragit S 100 
HSB III Human insulin loaded microparticles using Chitosan and 5% w/v Eudragit S 100 
HSB IV Human insulin loaded microparticles using Chitosan and 6% w/v Eudragit S 100 
BSB I Bovine insulin loaded microparticles using Chitosan and 3% w/v Eudragit S 100 
BSB II Bovine insulin loaded microparticles using Chitosan and 4% w/v Eudragit S 100 
BSB III Bovine insulin loaded microparticles using Chitosan and 5% w/v Eudragit S 100 
BSB IV Bovine insulin loaded microparticles using Chitosan and 6% w/v Eudragit S 100 
HLA I Human insulin loaded microparticles using Chitosan and 3% w/v Eudragit L 100 
HLA II Human insulin loaded microparticles using Chitosan and 4% w/v Eudragit L 100 
HLA III Human insulin loaded microparticles using Chitosan and 5% w/v Eudragit L 100 
HLA IV Human insulin loaded microparticles using Chitosan and 6% w/v Eudragit L 100 
BLA I Bovine insulin loaded microparticles using Chitosan and 3% w/v Eudragit L 100 
BLA II Bovine insulin loaded microparticles using Chitosan and 4% w/v Eudragit L 100 
BLA III Bovine insulin loaded microparticles using  Chitosan and 5% w/v Eudragit L 100 
BLA IV Bovine insulin loaded microparticles using Chitosan and 6% w/v Eudragit L 100 

HLSY I 
Human insulin loaded microparticles using Chitosan and 3% w/v Eudragit L 100: Eudragit S 

100 (1:1) 

HLSY II 
Human insulin loaded microparticles using Chitosan and 4% w/v Eudragit L 100: 

Eudragit S 100 (1:1) 

HLSY III 
Human insulin loaded microparticles using Chitosan and 5% w/v Eudragit L 100: 

Eudragit S 100 (1:1) 

HLSY IV 
Human insulin loaded microparticles using Chitosan and 6% w/v Eudragit L 100: 

Eudragit S 100 (1:1) 

BLSY I 
Bovine insulin loaded microparticles using Chitosan and 3% w/v Eudragit L 100: 

Eudragit S 100 (1:1) 

BLSY II 
Bovine insulin loaded microparticles using Chitosan and 4% w/v Eudragit L 100: 

Eudragit S 100 (1:1) 

BLSY III 
Bovine insulin loaded microparticles using Chitosan and 5% w/v Eudragit L 100: 

Eudragit S 100 (1:1) 

BLSY IV 
Bovine insulin loaded microparticles using Chitosan and 6% w/v Eudragit L 100: 

Eudragit S 100 (1:1) 

 

After observing these formulations, it was found 
that size of particles was in the range of 1-10 
μm. which is ideal for cellular uptake. Also, zeta 
potential values indicate the good stability of 
particles. As the concentration of polymer 
increases in the formulation, % Entrapment 
Efficiency (EE) increases. This could be due to 
more coating of the Eudragit polymer and hence 
less leakage of the drug occurs due to less 
number of pores left. 
 

CONCLUSION 

The large variety of applications as well as the 
steadily increasing number of research workers 
engaged in studies of Eudragit polymers due to 
their unique properties, have made significant 
contributions to many types of formulations and 
suggest that the potential of Eudragit as novel 
and versatile polymer will be even more 
significant in future. Purpose of such an 
approach was to formulate a stable formulation 
for proteins and peptides like insulin which are 
susceptible to denaturation, degradation, and 
conformational changes. 
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