INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES

Available online at www.ijpcbs.com

Research Article

BIOACTIVE COMPOUNDS FROM MARINE ACTINOMYCETES ISOLATED

FROM THE SEDIMENTS OF BAY OF BENGAL

B. Sirisha^{1*}, R. Haritha², YSYV. Jagan Mohan¹, K. Siva Kumar¹ and T. Ramana³

¹Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam 530 003, India.

²Department of Biotechnology, Visakha Government Degree College (Women), Visakhapatnam 530 020, India.

³Dean of school of life sciences GITAM University, Visakhapatnam, India.

ABSTRACT

Studies on the enzyme activites and antibacterial potential of actinomycetes isolated from the sediments obtained from different locations of Bay of Bengal, India has been carried out. A total of 63 isolates of actinomycetes were isolated from 20 sediment samples by using two different methods of isolation. All the isolates were tested for their ability to produce cellulase, amylase, lipase, chitinase, L-Asparaginase and protease. The results revealed that 81%, 59%, 44%, 31% and 24% of the isolates exhibited amylase, protease, chitinase, L-Asparaginase and cellulase, activites respectively. Screening for antibacterial activity revealed that 10 isolates exhibited antibacterial activity. The marine actinomycete isolates exhibited more antimicrobial activity against gram positive bacteria than the gram negative bacteria. All the 63 actinomycetes were characterized to the generic level based on the colony and microscopic morphology. Out of 63 isolates, 85% (n=53) isolates belong to the genus *Streptomyces*, 7% (n=5) to *Micromonospora*, 4% (n=3) to *Nocardia* and 3% (n=2) to *Streptosporangium*. The study revealed the diversity of marine actinomycetes from Bay of Bengal and their potential as a source of novel bioactive compounds.

Keywords: Marine actinomycetes, Bioactive compounds, Streptomyces.

INTRODUCTION

Actinomycetes represent a ubiquitous group of microbes that are the most economically and biotechnologically valuable prokaryotes. several ecologically significant properties of actinomycetes were reported, which made the screening expand into source uncommon environments¹. Actinomycetes comprise 10% of the total bacteria colonizing marine aggregates². It is a boon in marine bioprospecting for the exploration and exploitation of the rich biological and chemical diversity found in marine organisms that inhabit the oceans.

For discovering novel bioactive compounds of biotechnological interest is important. Identification and study of marine microorganisms with unique physiological traits. Several factors such as: choice of screening source, pretreatment, selective medium, culture condition and recognition of actinomycetes colonies on a primary isolation plate are used for identification of unique actinomycetes³.

In view to the significance of marine ecosystems which provide a rich source of novel actinomycetes, the present study is aimed for bioprospecting of actinomycetes from the marine sediments of Bay of Bengal, with special focus on the production of bioactive compounds by the isolates.

MATERIALS AND METHODS

1) Sample Collection and Processing

Twenty marine sediment samples were collected from different locations of Bay of Bengal along the south east coast of India from a depth of 30-200 meters. Samples were brought to the laboratory in sterile bags and stored in refrigerator⁴. The location and depths of these sampling stations are summarized in Table 1.

2) Isolation of actinomycetes from the marine sediment

Two different methods of isolation of actinomycetes were followed-

a) Method 1

10 gm of each sample was suspended in 100 ml of sterile sea water and agitated at 150 rpm for 1 day to ensure the separation of the filamentous actinobacteria. 500µl of each supernatant was mixed with the molten agar media and poured into the petriplates.

b) Method 2

1gm of the each sample was added to the 10ml of sterile sea water in a conical flask. The flasks were agitated for about one hour. The marine sediment was filtered and the filtrate was serially diluted to obtain 10^{-1} to 10^{-7} dilutions using the sterilized sea water. An aliquot of 100μ of each dilution was spread on the media.

Different media like Starch Casein Agar (SCA)⁵ Glycerol Asparagine Agar (GA Agar)⁶ Humic acid-B vitamin agar (HV Agar)⁷and Glucose yeast extact malt extract agar (GYM)⁸ were used for isolation of actinomycetes. The media containing 50% of sterile sea water were supplemented with rifampcin (5ug/ml) and nystatin (25ug/ml) (Himedia Mumbai) to inhibit bacterial and fungal contamination respectively⁹ The petriplates were incubated upto 3 weeks at 28 °C. The isolated discrete colonies were observed and used for identification.

3) Enzymatic activities screening

The actinomycete isolates were inoculated on suitable medium by spot inoculation method to screen their enzyme activities. The plates were incubated at 28 °C for 4- 7days. The media as criteria for enzyme activites are given in Table 2.

4) Screening for Antimicrobial activity

Plate diffusion method¹⁰was used for the antimicrobial testing against *S.aureus* (MTCC 3160), *B.Subtilis* (MTCC 441), *B. cereus* (MTCC 430), *P. aeruginosa* (MTCC 424), *E. coli* (MTCC 443) and *P. vulgaris* (MTCC 426). The plates were incubated at 28 °C for 24 hrs and analyzed for zone formation.

5) Characterization of the isolates

The isolates were characterised upto genus level as per the Bergey's Manual of Determinative Bacteriology, 9th edition6and and International Streptomyces Project (ISP)8.

RESULTS AND DISSCUSSION

1. Isolation of actinomycetes from the marine sediment

A total of 54 isolates were obtained from 20 sediments using the first method of isolation while, 36 isolates were obtained employing the second method of isolation. These results clearly indicate that the method 1 is more advantageous over method 2 for isolating actinomycetes. Among the 90 isolates obtained by both the methods, 63 isolates were found to be morphologically distinct. Hence these 63 isolates are used for further studies.

The total count of actinomycetes isolated using different media is summarized in Table 3. Out of the five media used for isolation, starch casein agar media and glycerol asparagine agar have shown more number of actinomycetes while humic acid agar and glucose yeast extract malt extract in less favorable for agar resulted actinomycetes isolates. These results are in agreement with the findings of¹¹who used eight different selective media for isolation of actinomycetes and observed that starch casein agar and glycerol asparagine agar yielded good growth and more number of actinomycetes than the other types of media.

2. Screening of Enzymatic activities Among the 63 isolates, 52 isolates (81%) exhibited amylase activity, 36 isolates (59%) exhibited proteolytic activity, 30 isolates (49%) exhibited lipase activity, 28 isolates (44%) exhibited chitinase activity, 20 isolates (31%) exhibited L-Asparaginase activity and 15 (24%) exhibited cellulase activity. Agar plates showing the hydrolytic activity of L-asparaginase, cellulase and lipase produced by actinomycete isolates are shown in Figure.1.

The findings of ¹²and ¹³indicated that actinomycetes possessed the potential to secrete broad range of hydrolytic enzymes. Similarly, the present work indicated significant potential of enzyme production by the marine actinomycetes.

3. Screening for Antimicrobial activity

Out of 63 isolates, 10 isolates exhibited antibacterial activity. The antibacterial activities of the isolates against the test organisms are given in Table 4. Among the 10 isolates, AUBT-206 (Fig 2), AUBT-1404 and AUBT-1501 showed high antibacterial activities. The isolates AUBT-201, AUBT-702 and AUBT-1703 did not exhibit any activity against *P. vulgaris*, while isolates AUBT-201, AUBT-504 and AUBT-1902 did not exhibit activity against *P. aeruginosa.*

According to¹¹marine actinomycete isolates often show more active antimicrobial activity against gram positive bacteria than gram negative bacteria.¹⁴and¹⁵*Streptomyces* species from marine habitats showed significant antibacterial activity against *Staphylococcus aureus* and *B. subtilis.* Similarly, the present study also indicated that the marine actinomycete isolates exhibited more antimicrobial activity against gram positive bacteria.

4. Characterization of the isolates

Most of the marine actinomycete isolates produced grey and white colonies with pigmentation. The morphological characters of select actinomycete isolates are presented in Table 5. Out of the 63 isolates, 46 isolates showed growth within three days and 17 isolates showed growth after five days. 51 isolates showed brown (7), yellow (4), red (5), black (9) and grey (26) pigmentation.

All the 63 actinomycetes were identified upto the generic level based on the colony and microscopic morphology. Out of 64 isolates, 85% (n=53) isolates were assigned to the genus *Streptomyces*, 7 % (*n*=5) were identified as *Micromonospora*, 4 % (*n*=3) as % Nocardia and 3 (*n*=2) as Streptosporangium. In Fig.3.an isolate of Streptomycetes growing on glycerol asparagine agar plate is shown. The Distribution of the isolates studied is shown in Fig. 4.

Literature survey reveals that among the genera of marine actinobacteria, the genus *Streptomyces* is represented in largest number of species and varieties, which differ greatly in their morphology, physiology, and biochemical activities^{16,10,17,12,18}.

CONCLUSION

The present study also indicated that among the marine actinomycete isolates, *Streptomyces* is the dominant genera and revealed that the diversity of marine actinomycetes from Bay of Bengal and their potential as a source of novel bioactive compounds. Further studies on the molecular characterization of the isolates and purification of the bioactive compounds are in progress.

S.No	Date	Latitude	Longitude	Depth (meters)	Location
1.	1.09.2009	17°50.814N	84°01.422E	265	
2.	1.09.2009	17°50.556N	83°01.228E	52.93	Visakhanatnam
3.	1.09.2009	17°51.264N	83°32.060E	29.64	Visakhapatnam
4.	2.09.2009	16°59.832N	82°58.065E	201.17	
5.	2.09.2009	16°59.507N	82°43.923E	108.05	Kakinada
6.	2.09.2009	16°49.885N	82°25.665E	34.61	Kakinaua
7.	3.09.2009	15°59.813N	81°29.045E	191	
8.	3.09.2009	15°59.813N	81°24.737E	88.11	Divipoint
9.	3.09.2009	15°59.943N	81°20.229E	31.28	Divipoliti
10.	4.09.2009	15°00.551N	80°24.985E	192.60	
11.	4.09.2009	15°00.199N	80°16.943E	56.19	Singarayakonda
12.	4.09.2009	15°00.296N	80°12.826E	34.40	Shiyarayakunua
13.	6.09.2009	13°08.149N	80°35.251E	195	
14.	6.09.2009	13°08.490N	80°31.962E	99	Chennai
15.	6.09.2009	13°08.768N	80°26.478E	53.6	Cheffinal
16.	7.09.2009	12°12.519N	80°19.101E	100	
17.	7.09.2009	12°11.718N	80°15.246E	53.26	Cudallore
18.	7.09.2009	12°11.892N	80°05.725E	30	Guuanore
19.	8.09.2009	11°07.639N	80°07.236E	217	
20.	8.09.2009	11°07.511N	80°05.383E	107	Nagapatnam

Table 1: Locations of sampling stations

Table 2: Media as criteria for enzyme activities of actinomycetes

S.No.	Enzyme	Medium	Incubation days	Criteria for positive enzyme activity
1.	L-Asparaginase	M9 modified medium	7	Development of pink color
2.	Amylase	Minimal medium with starch	4	Clearing around the growth after flooding with 2% iodine
3.	Protease	Casein skim milk medium	7	Clearing around the growth
4.	Cellulase	Carboxymethyl cellulose media	7	Clear zones after flooding with 1% congred with 1M Nacl.
5.	Chitinase	Chitin agar media	5	Clearing around the growth
6.	Lipase	Tributyrin agar medium	7	Clearing around the growth

Table 3: Total count of actinomycetes in different media

	Number of actinomycetes isolated								
S.No.	Method 1				Method 2				
	SCA	GA agar	GYM agar	HV agar	SCA	GA agar	GYM agar	HV agar	
AUBT-1	1	1	0	0	1	0	0	0	
AUBT-2	1	2	1	0	1	1	0	0	
AUBT-3	1	1	0	1	1	0	0	0	
AUBT-4	0	1	1	0	1	1	0	0	
AUBT-5	1	0	0	0	2	0	1	1	
AUBT-6	2	1	0	2	0	1	0	0	
AUBT-7	1	1	0	0	0	0	0	0	
AUBT-8	1	0	0	0	1	0	0	0	
AUBT-9	2	1	1	1	1	1	0	0	
AUBT-10	1	0	0	0	1	1	0	0	
AUBT-11	3	2	1	0	0	1	1	1	
AUBT-12	2	2	0	0	1	1	0	0	
AUBT-13	1	0	0	0	0	0	0	0	
AUBT-14	2	1	1	0	1	0	0	0	
AUBT-15	1	1	0	0	0	1	0	0	
AUBT-16	1	2	0	1	1	1	0	1	
AUBT-17	0	1	0	0	1	0	1	0	
AUBT-18	1	1	1	0	1	1	0	1	
AUBT-19	1	0	0	0	1	1	0	0	
AUBT-20	0	2	0	0	1	2	0	0	
Total	24	19	6	5	16	13	4	3	

	Name of the test organism (Inhibition Zone diameter in mm)							
Isolate No.	E.coli (MTCC-443)	Proteus vulgaris (MTCC-426)	Pseudomonas aeruginosa (MTCC-424)	Bacillus subtilis (MTCC-441)	Bacillus cereus (MTCC-430)	Staphylococcus aureus (MTCC-3160)		
AUBT -201	14			14	10	11		
AUBT-206	20	11	16	19	16	10		
AUBT-301	11	10	12	14	11	10		
AUBT-504	10	12		11	10	11		
AUBT-702	13		14	15	12	12		
AUBT-1202	12	12	11	16	14	10		
AUBT-1404	18	11	17	13	14	16		
AUBT-1501	20	11	15	18	18	13		
AUBT-1703	12		11	14	10	11		
AUBT-1902	10	10		12	10	10		

Table 4: Antibacterial activity of isolates against the test organisms

Table 5: Morphological characteristics of selective actinomycete isolates

Isolate no	Aerial Mycelium	Substrate Mycelium	Diffusible pigment	Spore morphology	Spore mass colour
AUBT101	Brown grey	Black	Black	Rectiflexibles	Grey
AUBT502	White	Pink		Flexious	Cream or buff
AUBT802	Grey	Yellow		Spiral	Yellow
AUBT1002		orange	pink	Retinaculum	White
AUBT1203	Grey violet	Black	Brown	Hook like	Grey brown
AUBT1404	Grey	White		spiral	grey
AUBT1601	Lightgrey	ReddishBrown	black	Retinaculum	Brown
AUBT1803		yellow		Spiral	Grey
AUBT1902	Creamypinkish	Brown	Yellow	Rectiflexibles	pinkish-tan
AUBT2002	Brown grey	Brick red	green	Straight	bluish-green

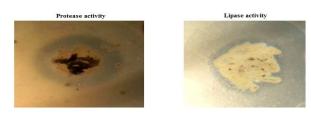


Fig. 1: Agar plates showing the activity of L-Asparaginase, lipase and cellulase produced by actinomycete isolates

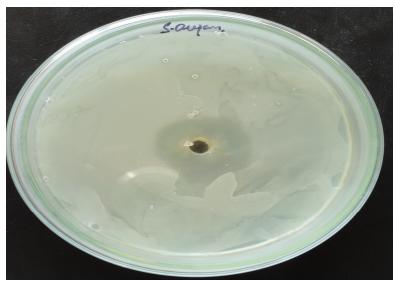


Fig. 2: Antibacterial activity of the isolate AUBT-206 by well diffusion technique

Fig. 3: Isolate of Streptomycetes growing on glycerol asparagine agar plate

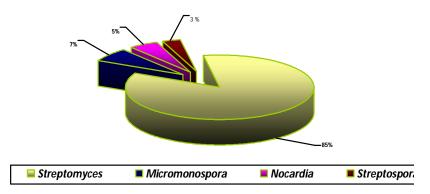


Fig. 4: Distribution of isolated actinomycetes genera

REFERENCES

- Gulve RM and Deshmukh AM. Antimicrobial activity of the marine actinomycetes. International Multidisciplinary Research Journal. 2012;2(3):16-22.
- Valli S, Suvathi Sugasini S, Aysha OS, Nirmala P, Vinoth Kumar P and Reena A. Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pacific Journal of Tropical Biomedicine. 2012; 469-473.
- Baskaran R, Vijayakumar R, and Mohan PM. Enrichment method for the isolation of bioactive actinomycetes from mangrove sediments of Andaman Islands, India. Malaysian Journal of Microbiology. 2011;7(1):26-32.
- 4. Remya M and Vijayakumar R. Isolation and characterization of marine antagonistic actinomycetes from west coast of India. Medicine and Biology. 2008;159(1):13-19.
- Kuster E and Williams ST. Selection of media for isolation of streptomyces. Nature. 1964;202:928-929.
- 6. Peter Kampfer . The Prokaryotes A Handbook on the Biology of Bacteria 3rd edn., eds. Martin Dworkin, Stanley Falkow, Eugene Rosenberg, Karl-Heinz Schleifer, Erko Stackebrandt Vol 3: Archaea. Bacteria: Firmicutes, Actinomycetes, Chapter 1.1.7, 2006;586-589, Springer publications, ISBN-10: 0-387-25476-5.
- Hayakawa M, Yoshida Y and Limura Y. Selective isolation of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. Journal of Applied Microbiology. 2004;96: 973–81.
- 8. Shirling EB and Gottlieb D. Methods for characterization of Streptomyces species. International journal of systematic bacteriology. 1966;16 (3):313-340.

- 9. Haritha R, Sivakumar K, Jagan Mohan YSYV and Ramana T. Amylolytic and Proteolytic Actinobacteria Isolated from Marine Sediments of Bay of Bengal. International Journal of Microbiological Research. 2010;1(2): 37-44.
- 10. Siva Kumar K, Jagan Mohan YSYV, Haritha R and Ramana T. Antagonistic studies of Marine Actinomycetes from Bay of Bengal. Drug Invention Today. 2010;2(9):405-407.
- 11. Kokare CR, Mahadik KR, Kadam SS and Chopade BA. Isolation, characterization and antimicrobial activity of marine halophilic Actinopolyspora species AH1 from the west coast of India. Curr. Sci.2004;86(4): 593-597.
- 12. Dharmaraj S. Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol. 2010;26: 2123-2139.
- Hamedani. 13. Khadijeh Nazanin Soudbakhsh M. Arijit Das, Prashanthi K, Sourav Bhattacharya and Sandeep Suryan. Enzymatic Screening, Antibacterial Potential and Molecular Characterization of Streptomycetes Isolated from Wayanad District in Kerala, India. IJPBS.2012; 2(1):201-210.
- 14. Devi NKA, Jeyarani M and Balakrishnan K. Isolation and identification of marine actinomycetes and their potential in microbial activity. Pak. J Biol. Sci.2006;9(3):470-472.
- 15. Dhanasekaran D, Selvamani S, Panneerselvam A and Thajuddin N. Isolation and characterization of actinomycetes in Vellar Estuary, Annagkoil, Tamil Nadu. Afr. J Biotechnol. 2009;8(17): 4159-4162.
- 16. Renu Solanki, Monisha Khanna and Rup Lal. Bioactive compounds from marine actinomycetes. Indian J. Microbiol. 2008;48:410–431.
- 17. Isoken H, Ogunmwonyi, Ntsikelelo Mazomba, Leonard Mabinya, Elvis

Ngwenya ,Ezekiel Green, David, Akinpelu, Ademola O, Olaniran, Kim Bernard and Anthon Okoh. Studies on the culturable marine actinomycetes isolated from the Nahoon beach in the eastern cape province of South Africa. African journal of microbiology research. 2010;4(21):2223 - 2230.

18. Sivakumar K, Haritha R, Jagan Mohan YSYV and Ramana T. Screening of marine actinobacteria for antimicrrobial compounds. Research journal of Microbiology. 2011;6(4):385-393.