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INTRODUCTION 
Monosodium L- glutamate (MSG) is the sodium 
salt of the amino acid, Glutamic acid1 (Figure 1). 
Glutamate is one of the most abundant amino 
acids that make up proteins, found in protein 
rich foods such as milk, meat, fish, cheese, 
tomato products, soy sauces, and in many 
animal tissues and is responsible for their 
savoury taste2. It is produced commercially by 
the fermentation of molasses and fermented 
proteins (soy sauce and hydrolyzed vegetable 
protein). Glutamate is also produced in the body 
and plays an important role in human 
metabolism3.  

 
Fig. 1: Chemical structure of MSG 

 
MSG consumption has increased throughout the 
world in recent years as flavoring in cooking2, 4 

to increase palatability and food selection in a 
meal5. It is used to provide in the food as meaty, 
savoury, or brothy taste by stimulating the 
glutamate receptors on the tongue. There are 
glutamate receptors in other parts of the body, 
especially the brain, where glutamate is acting 
as a neurotransmitter. This receptors induces 
more salivation, create greater stimulation of 
the olfactory and limbic system of the brain and 
promotes immune function6. 
Almost all dietary glutamate, both in free form 
and as protein constituent, is metabolized in the 
intestinal mucosa. Dietary glutamate is a major 
energy source and an important substrate for 
the synthesis of glutathione and other amino 
acids in the gut7. The average intake of 
glutamate as protein constituent (10g) and in its 
free form has been estimated approximately 1 
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ABSTRACT 
This review assesses many of the health implications and toxicity associated with monosodium 
glutamate (MSG) in animal models. MSG is the sodium salt of the amino acid responsible for 
their savoury taste of the food. The prevalence of this salt as a food additive in Asian, American 
and European cuisine and other diets. Debate over the healthiness of MSG and its effects on 
human obesity and other health problems has led to a negative public opinion. This literature 
review assesses that the consumption of MSG brings to pertain weight gain, obesity, locomotor 
and learning deficit, behavior and memory changes in rats. Increased obesity and body mass in 
rats is also associated with diabetes mellitus, hyperinsulinemia, atherosclerosis, cardiovascular 
disorder and fatty liver. The studies further suggest that MSG is neurotoxic in rats when injected 
neonatally. This review asserts the neonatal consumption of MSG leads to scarring of the 
neurons in the hippocampus and inhibited glutamate synthesis, resulting in impaired spatial 
memory and learning. Most of the studies provide evidence that ingestion of MSG is associated 
with neuro-endocrine disorders, metabolic dysfunction, oxidative stress and learning and 
memory deficit based on the clinical studies. 
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g/day8. With respect to added glutamate mostly 
in the form of MSG, the average intake ranges 
0.3 to 0.5 g/day in European countries and 1.2 
to 1.7 g/day in Asian countries8. These levels of 
glutamate in the food are considered as safe8, 9.  
The aim of the present study was to review the 
toxicity effect of MSG on neuro-endocrine, 
metabolic and behavioral abnormalities in 
pregnant and neonatal animals based on the 
clinical studies. 
 
OXIDATIVE STRESS  
The uses of MSG as a safe food additive has been 
questioned, due to a number of reports about its 
toxic effects in humans as manifested by the 
‘Chinese Restaurant Syndrome’ and the 
production of lesions in the hypothalamus of 
newborn mice and monkeys10. Many studies 
show that MSG at dose levels above 4 mg/g b.w. 
induced hyperlipidemia and hyperglycemia11-13 
and oxidative stress in the red blood cells14. 
Elevated levels of glucose can result in 
peroxidation of membrane lipids and red blood 
cells, probably due to enolyzation of glucose, 
thereby reducing molecular oxygen and yielding 
α-keto aldehydes and free radical 
intermediates15.  
The other research study showed that MSG (2 
mg/g) administered in mice for 5 consecutive 
days produced severe obesity, urinary glucose, 
hyperglycemia, hyperinsulinemia, and a 
decrease in both glucose tolerance and insulin 
sensitivity. In these animals, a severe 
hypertrophy of pancreatic islets due to the 
proliferation of β cells was observed, indicating 
that MSG mice could be used as the animal 
model of human type 2 diabetes mellitus16 and 
insulin resistance17. In addition, MSG-induced 
obese animals, when administered MSG (2 
mg/g) for 5 days, were a useful model of non-
alcoholic fatty liver disease (NAFLD)/non-
alcoholic steatohepatitis (NASH) in humans18. 
This is because these MSG mice showed the 
development of marked centrilobular fatty 
change with fibrosis progressing to hepatic 
neoplasm in the liver. A single subcutaneously 
administered an increasing dose of 4mg/g MSG 
induced immediate severe obesity in mice19-21. 
Nagata et al16 reported that MSG administered 
at 2 mg/g subcutaneously for 5 consecutive days 
to mice induced severe body weight, body 
length, obesity, diabetes mellitus, and liver 
lesions resembling NAFLD/NASH and several 
kinds of dysfunction of lipid metabolism22, 23.  
The growth rate of all the mice was suppressed 
and 10% of the animals in the 4 mg/g x5 course 
MSG administered groups mice died16. The 
cause of growth suppression resulting from MSG 
treatment is thought to be brought about by the 

impaired production of growth hormone 
releasing factor, which accompanies the 
necrosis of nerve cells in the arcuate nucleus24, 

25. It was estimated that the 4 mg/g×5 course of 
treatment with MSG would be the maximum 
possible dose because of its high toxicity16. 
 
NEUROTOXICITY STUDIES 
Glutamate, an important excitatory amino acid, 
is also a neurotransmitter distributed 
ubiquitously in the mammalian brain26, 27.  
Glutamate is present in high levels in the brain 
and select groups of neurons. The endogenous 
L-glutamate, as the derived L-glutamate of 
exogenous precursors, is liberated in a Ca2+-
dependent way after a depolarizing stimulus in 
the CNS28, 29. This glutamate may play a key role 
in the induction of neuronal cell death occurring 
in several neurological disorders including 
Alzheimer’s disease30-33, Huntington disease30, 34 
and Parkinson’s disease30, 33. Glutamate elicits 
neurotoxic effects via distinct receptor and non-
receptor-mediated mechanisms35-39. Glutamate 
receptors play broad roles in neural plasticity, 
neural development and neurodegeneration, 
while N-methyl-D-aspartate (NMDA) receptor 
activity mediates the expression of 
neuropeptides39, 40. 
MSG could penetrate the placental barrier and 
distribute to embryonic tissues, particularly 
gaining high levels in brain tissue of fetal mice 
after maternal administration41-44. Glutamate 
can produce obvious behavioral changes and 
neuronal apoptosis41-44. It was also reported that 
neonatal administration of large doses of MSG 
can cause neuronal necrosis in some brain 
regions45-47. High doses of MSG in neonates 
results in selective brain lesions accompanied 
by endocrine, metabolic and behavioral 
disturbances in adulthood48-50. Neonatal 
exposure to excessive MSG may lead to 
excitotoxicity and neuronal cell death during 
development41,42,46, 52, 53. 
That exogenous glutamate could be neurotoxic 
was first proposed by Lucas and Newhouse54 
who described neuronal degeneration in the 
inner layer of the retina following subcutaneous 
administration of MSG to the neonatal mouse. 
Subsequently, Olney48 observed necrosis in the 
hypothalamic (arcuate nucleus) neurons of 
neonatal mice given MSG systemically. Other 
investigators have also found 
neurodegenerative changes after MSG 
administration in various rodent species, usually 
when the compound was administered 
subcutaneously or by forced gavage. 
It appears, however, that the neurotoxic 
potential of exogenous glutamate in vivo is 
critically dependent upon its route of 
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administration. Neuronal lesions have never 
been observed after ad libitum consumption of 
very high MSG doses. Thus, the studies observed 
hypothalamic lesions in weanling mice, 
probably the most sensitive species, following 
ad libitum MSG administration in the diet or 
drinking water at doses as high as 45.5 g/kg or 
20.9 g/kg, respectively (These doses are 10-20 
times higher than those required to induce 
neurodegenerative changes following parenteral 
or forced oral administration). This difference is 
probably related to differences m the 
pharmacokinetics of MSG depending on its route 
of administration which, in turn, determine its 
effects on extracellular brain glutamate 
concentrations. When glutamate is consumed 
orally, its effects on the brain are buffered by 
metabolism in the gastrointestinal tract, 
extrusion from the brain by active blood-brain 
transport systems, and local mechanisms 
mediating its uptake and metabolism in brain, 
these cause brain  extracellular glutamate 
concentrations to remain relatively stable (The 
mechanism of MSG's neurotoxic effects has been 
attributed to a prolonged increase in 
extracellular glutamate concentrations54. 
 
EXCITOTOXICITY STUDIES 
Glutamate interacts with two main subtypes of 
membrane receptors, ionotropic and 
metabotropic, coupled to ion channels and G 
proteins, respectively. The ionotropic receptors 
are further subdivided, based on selective 
agonists, into N-methyl-D-aspartate (NMDA), 
kainate, and a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionate (AMPA) subtypes27,29,55,56. 
Interactions of glutamate with its ionotropic, 
mainly NMDA, receptors can lead to neurotoxic 
changes in some experimental situations by 
allowing excessive amounts of calcium to enter 
the neuron57. The metabotropic receptors are 
present in the presynaptic membrane and do 
not form ion channels; they are associated with 
G proteins and respond to the stimulus of 
second intracellular messengers56,58. 
Early studies in the 70’s, demonstrated that the 
administration of high concentrations of 
glutamate and other excitatory amino acids to 
the nervous system, produced degeneration and 
neuronal death in certain cerebral regions and 
that these effects are related to the 
excitotoxicity or neuronal damage due to 
excessive neuronal excitation through a specific 
on-activation of their ionotropic receptors27, 55. 
Neuronal circuits’ construction is a dynamic 
process where both glutamate (Glu) and GABA 
(gamma-aminobutyric acid) mediated 
neurotransmissions have been largely 
implicated59-61. Moreover all neuronal networks 

in the vertebrate brain consist of excitatory 
principal neurons (glutamatergic) and 
inhibitory interneurons (GABAergic), which 
interact in active way establishing a functional 
balance to avoid any disease59. For this reason, 
changes in neuronal excitability during early 
development stages may modify chemically 
coded neural networks with possible 
pathological consequences 61-63.  
The neurotoxicity that is induced by an on-
activation of these glutamatergic receptors has 
been associated with diverse neurodegenerative 
diseases64 as well as the excitotoxicity by 
nutritious ingestion of glutamate in the form of 
monosodic salts when consumed in high 
concentrations28, 65. It has also been 
demonstrated that the administration of MSG to 
immature animals induces destruction in certain 
regions of the brain that lack a blood–brain 
barrier, such as the arcuatus nucleus of the 
hypothalamus that is involved in the regulation 
of neuroendocrine functions27, 28, 64.  
However, these demonstrations have ignored 
the effects of the systemic administration of 
MSG that can develop high concentrations in 
organs such as liver and kidney; even when the 
presence of glutamatergic receptors has been 
demonstrated outside the CNS27, 28, 64, 66. These 
sub-types of receptors have been observed as 
the NMDA-R1, GluR 2/3 and mGluR 2/3 in liver, 
kidney, lungs, spleen and testicles27, 28, 64, 66. 
Additionally, Glutamate receptor over activation 
could lead to neuronal death in several brain 
regions, such as cerebral cortex, and 
hippocampus, between others67, 68. This kind of 
death is called excitotoxicity and is triggered by 
the Ca2+ influx mediated mainly by ionotropic 
glutamate receptors (iGlu-R) activation68, and it 
appears to be involved in several brain 
disorders, such as ischemic-hypoxic injury69, 
epileptic seizures70 and some chronic 
neurodegenerative diseases71, 72.  
The susceptibility to excitotoxicity seems to be 
organism, age, sex, brain region, and neuronal 
type dependent73,74. Therefore high Glu 
concentrations administered to male neonatal 
rats induce more extensive neuronal damage 
than in female or adult animals73. The results 
showed that four subcutaneous administration 
of Glu (4 mg/kg) induce neuronal death, which 
appears to be mediated through the activation 
of intracellular signaling p38 pathway and 
associated with changes in expression level of 
the three kinds of iGlu-R (NMDA, AMPA and 
Kainate-receptors)75-78. 
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NEUROTOXICITY IN PREGNANT AND FETAL 
RATS 
MSG is given subcutaneously to pregnant rats 
caused acute necrosis of the 
acetylcholinesterase-positive neurons in the 
area postrema. The same effect has been 
observed in the area postrema of foetal rats. The 
process of neuronal cell death and the 
elimination of debris by microglia cells proved 
to be similar in pregnant animals and in their 
foetuses. However, embryonal neurons were 
more sensitive to glutamate as judged by the 
rapidity of the process and the dose-response 
relationship. These observations raise the 
possibility of transplacental poisoning in human 
foetuses after the consumption of glutamate-
rich food by the mother79. 
 
NEUROTOXICITY IN NEONATES 
MSG treatment of neonatal rodents results in a 
syndrome characterized by damage of the CNS, 
neuro-endocrine and behavioral abnormalities, 
arrested skeletal growth, hypophagia, and 
obesity80-84, 48. Obesity, associated with 
hypophagia and decreased body weight, is a 
specific feature of this syndrome. Recently, a 
decreased volume, density, and number of VMH 
neurons in neonatally MSG-treated rats have 
been documented83.  
The neonatal administration of large doses of 
MSG to rodents causes neuronal necrosis in 
some brain regions, along with behavioral and 
metabolic abnormalities45,85, 86. A dose of 4 mg/g 
body weight of glutamate (Glu), as MSG, induces 
excitotoxicity87 when administered to young 
rats. Evidence from various sources has 
indicated that both N-methyl-d-aspartate 
(NMDA) and non-NMDA receptors are 
expressed in the embryonic and developing rat 
neocortex88, 89. Several studies have 
demonstrated that glutamate receptors play an 
important role during development, both in 
shaping the neuronal circuitry, and in regulating 
synaptic plasticity in the central nervous 
system90, 91. On the other hand, expression of 
both AMPA receptors and kainate  receptors has 
been strongly correlated with neuronal 
differentiation, maturation, and laminar 
formation92. Abnormal changes in axodendritic 
synapses, with an increase in the width of the 
post-synaptic thickening, have reported recently 
to be induced by the local application of 
Glutamate to the rat neocortex91. This strongly 
suggests that intense activation of Glutamate 
receptors by high-level exposure to exogenous 
Glutamate at an early age could modify the 
number of cortical neurons and their dendritic 
connectivity. 
 

LOCOMOTOR AND LEARNING DEFICITS 
The administration of large doses of MSG (4 
mg/g, s.c. in the neonatal stage) to rodents 
causes neuronal necrosis of the hypothalamus 
along with behavioural abnormalities such as 
lethargy, changes in locomotor activity and 
learning deficits93, 45, 95. The effects of neurotoxic 
higher doses of MSG (4 mg/g) on the locomotor 
activity of rats are variable. Thus, 
hyperactivity96 and hypoactivity 49, 96-98 have 
been reported in MSG-treated rats. Reasons for 
this inconsistency may include differences in the 
apparatus employed, route of administration 
and age of animals treated and/or length of time 
for which observations were made96, 97. 
High doses of MSG to neonates have been 
reported to result in long-lasting deficits in the 
learning ability99, 100. Repeated treatment with 5 
mg/g MSG in the neonatal stage induced deficits 
in discrimination learning in a T-maze 
experiment for food reinforcement98. It has been 
postulated that Glutamte (N-methyl-d-aspartate 
(NMDA) receptors play an important role in 
many neurological functions, including long-
term potentiation, learning and memory101-103. 
Areas of the brain that are involved in learning 
and memory, such as the hippocampus and 
cortex, have a high concentration of NMDA 
receptors104 and NMDA receptor antagonists 
block the acquisition of behavioral tasks105, 106. It 
is well known that neonatal treatment with MSG 
destroys 80–90% of the arcuate nuclei 
neurons104.  
On this basis, prenatal MSG treatment was 
proposed as a model of dementia associated 
with neurodegeneration93. Actually, it has been 
demonstrated that animal models exhibiting 
several kinds of behavioral disturbances express 
abnormalities of synaptic plasticity107, 108. 
 
ENDOCRINE MALFUNCTION 
The subcutaneous administration of large doses 
of MSG (4 mg/g, in the neonatal stage) results in 
severe adenohypophyseal endocrine 
malfunction as a result of hypothalamic 
neurotoxic lesioning109. The hypothalamic lesion 
induces well characterized endocrinological 
alterations such as blunted growth, 
hypogonadism, hypothyroidism and obesity110. 
Imunocytochemical studies showed that the 
large doses of MSG produce cytotoxicity in the 
mediobasal hypothalamus and a marked 
decrease in TH110-112 and GHRF110, 113, 114, IR, but 
not LHRH IR110,115. These findings offer a 
reasonable explanation for the phenomenon 
that adult rats treated with MSG during the 
neonatal period reveal suppressed GH secretion 
and retardation of body growth116-118, 24, 82 . 
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HYPOTHALAMIC OBESITY 
MSG-induced obese rat is a model associated 
with insulin resistance and dyslipidemia that 
may occur without the presence of hypertension 
or type 2diabetes, depending on the age at 
which the animals are studied48,17,119. The 
administration of MSG to newborn rats results 
in distinctive lesions in hypothalamic arcuate 
nucleus (ARC) neurons. The neuronal loss 
impairs insulin and leptin signaling and impacts 
energy balance as well as pituitary and adrenal 
activity. In contrast to other models of obesity, 
MSG-treated rats are characterized by increased 
plasma levels of corticosterone as well as 
increased lipogenesis and reduced lipolysis in 
the adipose tissue, despite their normophagia120-

124. An understanding of the alterations 
associated with MSG-induced obesity is of great 
relevance because the ARC is among the 
principal sites that regulate energy 
homeostasis125. Although the endocrine, 
metabolic, and autonomic aspects of MSG-
induced obesity have been extensively studied, 
the association between MSG and the 
development of vascular alterations is less 
understood.  
MSG administration induces hyperphagia and 
increases the energy intake120, 126, MSG 
treatment might also induce hepatic metabolic 
shifting, which result in further injury. MSG at 
high concentrations (4 mg/g body weight or 4 
g/kg) has been used experimentally to induce a 
variety of toxic effects127, including 
hypothalamic lesion128, 129 and obesity in 
neonatal animals96, 120, 126. The development of 
hypothalamic obesity has been ascribed mainly 
to hyperphagia130, but in addition to effect on 
food intake, hypothalamic lesion must also 
result in increased FCR, which is observed even 
when high blood glutamate levels are 
reached128, 129. The MSG induced alterations are 
age dependent and were observed with 
subcutaneous injection in neonatal 1 and 5 days 
of age96. 
 
RETINAL DYSFUNCTION 
Neonatal treatment with monosodium 
glutamate (MSG) causes neuronal cell death in 
specific central nervous system (CNS) regions 
such as the arcuate nucleus, the area postrema 
and the retina10, 54.  
Lucas and Newhouse53 noticed that severe 
retinal lesions could be produced in suckling 
mice by a single injection of MSG. Studies 
confirming their findings using neonatal 
rodents131 and adult rabbits132 followed shortly, 
with others being reported from time to time134. 
These studies concerned themselves not only 
with the confirmation of MSG induced retinal 

lesions, but with the formulation and testing of 
hypotheses to explain the phenomenon. 
Ohguro et al134 found that rats fed 10 grams of 
sodium glutamate (97.5% sodium glutamate 
and 2.5% sodium ribonucleotide) added to a 
100 gram daily diet for as little as 3 months had 
a significant increase in amount of glutamic acid 
in vitreous, had damage to the retina, and had 
deficits in retinal function. Other reports of toxic 
effects of MSG have come from studies at the 
University of Pecs, Hungary, where the 
neuroprotective effects of PACAP in the retina 
have been studied135- 137.   
 
SUMMARY 
The weight of the evidence supports the toxicity 
effect of MSG as a generally not safe food 
flavoring agent. Several studies provide 
evidence that ingestion of MSG is associated 
with neuro-endocrine disorders, metabolic 
dysfunction oxidative stress and learning and 
memory deficit based on the clinical studies. 
However, neither persistent nor serious effects 
from MSG ingestion were observed, and the 
frequency of the responses was low. More 
importantly, the responses reported were 
inconsistent and were not reproducible.  
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