VISIBLE SPECTROSCOPIC METHOD FOR ESTIMATION OF
AMLODIPINE BESYLATE IN TABLETS

Praveen Kumar Jampana¹, BH. Rajesh Varma², G. Raveendra Babu³,
P. Sri Lakshmi Surekha⁴, T. Kala Praveen⁵ and P. Sambhasiva Rao⁴
¹Laurus Labs Private Limited, Hyderabad, Andhra Pradesh, India
²Syngene International Limited, Bangalore, Karnataka, India.
³D.C.R.M. Pharmacy College, Inkollu, Andhra Pradesh, India.
⁴Vijaya College Pharmacy, Hayathnagar, Hyderabad, Andhra Pradesh, India.

ABSTRACT
A simple, sensitive, specific, and validated Visible method has been developed for the quantitative determination of Amlodipine besylate in pure and tablet dosage form. The λmax was found to be 456 nm for assay. The linearity was found in concentration range of 3-30 μg/ml. The correlation coefficient was found 0.999. The regression equation was found as Y = 0.0222C + 0.0034Y. The method was validated for linearity, accuracy, precision and ruggedness. The LOD and LOQ for estimation of Amlodipine besylate were found as 0.104, 0.322 respectively. Recovery of Amlodipine besylate was found to be 99.90%.

Keywords: Amlodipine besylate, Visible Spectrophotometry, Validation, Beer’s law.

INTRODUCTION
Amlodipine besylate is chemically 3-Ethyl 5-methyl (4RS)-2-[(2-aminoethoxy) methyl]-4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate benzene sulphonate. Amlodipine is used in the management of hypertension¹ and coronary artery disease². It is available in several officials in Pharmacopoeia³-⁵. Literature survey reveals that, Spectrophotometric methods⁶-²⁰, HPLC²¹-²³, HPTLC²⁴, UPLC²⁵. In the present study, an attempt has been made to develop UV Spectrophotometric method for the determination of Amlodipine besylate in bulk and marketed formulations using 0.01% O-phosphoric acid. The developed method was found to be simple, sensitive and reproducible.

MATERIALS AND METHODS

Instrumentation
The present work was carried out on Elico SL164 UV- Visible spectrophotometer having double beam detector configuration. The absorption spectra of reference and test solution were carried out in a 1 cm quartz cell over the range of 200-800 nm.

Chemicals
All chemicals of analytical grade used as it is.

Preparation of standard solution
Standard stock solution was prepared by dissolving accurately weighed 100 mg of amlodipine besylate in Dimethyl sulphoxide and the volume was made up to 100 ml with Dimethyl sulphoxide. (Stock solution-I, 1000 mcg/ml). 10 ml of stock solution-I was diluted to 100 ml with dimethyl sulphoxide. (Stock solution-II, 100 mcg/ml). 1.5 ml of stock solution-II was transferred to a 10 ml volumetric flask. To the flask 1 ml of 5% w/v Potassium Hydroxide was added and the final volume was diluted to 10 ml with dimethyl sulphoxide, so that to produce the concentration 10 mcg/ml. The absorbance of yellow chromogen obtained was measured against respective blank solution in the visible region of 400-600 nm, which shows maximum absorbance at 456 nm.

Preparation of sample solutions
20 tablets of one brand of amlodipine besylate was took, and all the tablets were crushed to fine powder by using pestle and mortar. Powder equivalent to 25 mg of amlodipine besylate was
weighed accurately and transferred into a 25 ml standard volumetric flask. The contents were dissolved in Dimethyl sulphoxide and sonicated for five minutes. This solution was filtered through 0.45 μm whatman filter paper. 5 ml of the filtrate was diluted to 50 ml with dimethyl sulphoxide to get the solution of 100 mcg/ml. An aliquot of 1.5 ml of test solution was transferred to a 10 ml volumetric flask. To the flask 1 ml of 5% w/v Potassium Hydroxide was added and the final volume was diluted to 10 ml with dimethyl sulphoxide, so that to produce the concentration 10 mcg/ml. The absorbance of yellow chromogen obtained was measured against respective blank solution in the Visible region of 400-600 nm, which shows maximum absorbance at 456 nm.

PROCEDURE

Aliquots of standard solution of amlodipine besylate ranging from 0.5-2.5 ml (1 ml = 100 mcg) were transferred into a series of 10 ml volumetric flasks. The volume in each flask was made up to 10 ml with distilled water and the absorbances were measured at 456 nm against solvent blank. The obtained absorbance values when plotted against the concentration of amlodipine besylate give the calibration graph.

VALIDATION

Validation of the developed method was done according to ICH guidelines26.

Linearity

The linearity of the method was demonstrated over the concentration range of 3-30 mcg/ml of the target concentration. Accurately weighed 100 mg of pure drug was taken in clean, dry 100 ml volumetric flask and dissolved in small volume of Dimethyl sulfoxide and made up the volume to 100 ml with Dimethyl sulfoxide. This gave 1000 mcg/ml of drug concentration (Stock solution-I). From this 10 ml of solution was pipetted out into 100 ml volumetric flask and volume was made up to the mark with dimethyl sulfoxide (Stock solution-II, 100 mcg/ml). Concentrations of 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30 mcg/ml were prepared from above prepared Stock solution-II, calibration curve was plotted and the correlation coefficient was calculated.

Precision

Correlation coefficient of the linearity were found for the method and reported in Table No.1. The precision of an analytical method is the degree of agreement among individual test results when the method is applied repeatedly to multiple samplings of homogenous samples. It provides an indication of random error results and was expressed as coefficient of variation (CV).

Intra and inter-day precision

A variation of results within the same day (intra-day), variation of results between days (inter-day) was analyzed. Intra-day precision was determined by analyzing amlodipine besylate for five times in the same day at 456 nm. Inter-day precision was determined by analyzing the drug daily once for five days at 456 nm.

Accuracy

Accuracy is the closeness of the test results obtained by the method to the true value. The recovery technique was performed to judge the accuracy of the proposed method. For this, known quantities of the amlodipine besylate solution were mixed with definite amounts of pre-analyzed formulations and the mixtures were analyzed. The total amount of amlodipine besylate was determined by using the proposed method and the amount of added drug was calculated by the difference.

Ruggedness and Robustness

The solutions were prepared and analyzed with change in the analytical conditions like different laboratory conditions and different analysts.

RESULT AND DISCUSSIONS

The optimum conditions for Visible spectroscopy method has been established by varying the parameters one at a time and keeping the other parameters fixed and observing the effects of products on the absorbance of the sample and colored species. Beer's law limits, molar absorbivity, Sandal's sensitivity, %range of error and % relative standard deviation are summarized in Table 1. The regression analysis using the method of least squares was made for the slope (b), intercept(a) and correlation coefficient(r) obtained from different concentrations are given in Table 1. The results showed that the method have reasonable precision. To evaluate the validity and reproducibility of the methods, known amounts of pure drug were added to the previously analyzed pharmaceutical dosage forms and the mixtures were analyzed by the proposed methods. The percentage recoveries are given in Table.3. The interference studies veiled that the common excipients and other additives that are usually present in the injection dosage forms did not interfere at their regularly added levels.
CONCLUSIONS
From the results the method described in this paper for the determination of Amlodipine besylate from tablet formulation is simple, accurate, sensitive and reproducible. The proposed method could be applied for routine analysis in quality control laboratories.

ACKNOWLEDGEMENTS
The authors are thankful to management of Sir I.P.V.A.S educational society for providing laboratory facilities.

Fig. 1: Structure of Amlodipine besylate

![Structure of Amlodipine besylate]

Fig. 2: Overlay spectrum of Amlodipine besylate in Dimethyl sulphoxide and 5%w/v Potassium hydroxide (3-30mcg/ml)

Calibration curve or Beer's law plot of Amlodipine besylate in Dimethyl sulfoxide and 5%w/v Potassium hydroxide

![Calibration curve or Beer's law plot]

Fig. 3: Calibration curve of Amlodipine besylate in Dimethyl sulfoxide and 5%w/v Potassium hydroxide (3-30mcg/ml).
Table 1: Optimum conditions, Optical characteristics and Statistical data of the regression equation in Visible spectrophotometry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Visible spectrophotometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{\text{max}}) (nm)</td>
<td>456</td>
</tr>
<tr>
<td>Beer’s law limits (mcg/ml)</td>
<td>3-30</td>
</tr>
<tr>
<td>Molar extinction coefficient (mol(^{-1})cm(^{-1}))</td>
<td>0.0068 \times 10(^4)</td>
</tr>
<tr>
<td>Sandell’s sensitivity (mcg/cm(^2)-0.001 absorbance units)</td>
<td>0.0102</td>
</tr>
<tr>
<td>Regression equation ((Y^*))</td>
<td>(Y=0.0222C + 0.0034)</td>
</tr>
<tr>
<td>Slope (b)</td>
<td>0.0222</td>
</tr>
<tr>
<td>Intercept (a)</td>
<td>0.0034</td>
</tr>
<tr>
<td>Correlation coefficient ((r^2))</td>
<td>0.9995</td>
</tr>
<tr>
<td>% RSD**</td>
<td>0.86</td>
</tr>
<tr>
<td>Limit of detection (mcg/ml)</td>
<td>0.104</td>
</tr>
<tr>
<td>Limit of quantitation (mcg/ml)</td>
<td>0.322</td>
</tr>
</tbody>
</table>

Table 2: Analysis of formulation

<table>
<thead>
<tr>
<th>Drug</th>
<th>Amount (mg/tablet)</th>
<th>% label claim</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labeled</td>
<td>Found</td>
<td></td>
</tr>
<tr>
<td>Amlodipine</td>
<td>10</td>
<td>99.62</td>
<td>99.62</td>
</tr>
</tbody>
</table>

Table 3: Recovery Studies

<table>
<thead>
<tr>
<th>Drug</th>
<th>Labeled claim (mg/Tablet)</th>
<th>Estimated amount (mg/Tablet)</th>
<th>Spike level (%)</th>
<th>Amount of drug added (mg)</th>
<th>Amount of drug recovered (mg)</th>
<th>Percentage recovery ± SD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amlodipine</td>
<td>10</td>
<td>9.962</td>
<td>50</td>
<td>2mg</td>
<td>1.998</td>
<td>99.90±1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>4mg</td>
<td>3.997</td>
<td>99.93±1.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>6mg</td>
<td>5.968</td>
<td>99.48±0.89</td>
</tr>
</tbody>
</table>

REFERENCES

5. European Pharmacopoeia. 981-982.

