INTRODUCTION
Diabetes mellitus is a major degenerative disease in the world today affecting at least 15 million people. Diabetes mellitus is associated with long term complications, including retinopathy, nephropathy, neuropathy and angioptathy and several others. It is a multifactorial disease which is characterized by hyperglycemia, lipoprotein abnormalities, raised basal metabolic rate, defect in reactive oxygen species scavenging enzymes and high oxidative stress induced damage to pancreatic beta cells. It is ranked third among the leading causes of death when its fatal complications are taken into account. Today in India alone there are more than 4.00 crore diabetics and the number is going to be around 9.00 crore by 2030. Over 7.20 lakh Indians die every year due to diabetes. People with diabetes are 2-4 times more likely to develop heart diseases. Efforts are ongoing to understand and manage diabetes mellitus because the disease and disease related complications are increasing day by day. In spite of presence of large number of medicines in the pharmaceutical market, remedies from medicinal plants are used with success to treat and this disease. India has 45,000 plant species and several thousand have medicinal properties. More than 800 plant species have anti-diabetic activity. There has been great demand for plant products due to low cost, easy availability and lesser side effects. For this plant materials are continuously...
scrutinized and explored for their effect as antidiabetic agents. One of the plants is *Eriobotrya japonica* locally known as loquat, has been used since olden times in the ethno medicine for treating diseases. The plant is reported to possess antioxidant, antiviral, cytotoxic, hepatoprotective, anti-inflammatory/antitussive activity. There is dearth of reports on the antidiabetic and hypolipidemic effects of the fruits of this plant. The present study was aimed to investigate antidiabetic and hypolipidemic activity of ethanolic extract of *Eriobotrya japonica* fruit in alloxan induced diabetic rats.

MATERIALS AND METHODS

Plant Material
The fruits of *Eriobotrya japonica* (family Rosaceae) were collected from Shalimar area of the district, Srinagar, during the months of April to June and authenticated by a plant taxonomist in the Centre of Plant Taxonomy, University of Kashmir, Srinagar. The identification was done on the basis of the characters described by Kirtikar and Basu, 1935. A sample of the plant material was deposited in the herbarium of the Department of Taxonomy, University of Kashmir under voucher specimen number 1012(KASH) dated 15-09-2008 for future reference. The plant material was dried in a well ventilated room with outside temperature ranging between 18 to 32°C.

Preparation of the extract
The fruits were coarsely powdered and 500 gm of the material was allowed to macerate for 48 hrs with 50% ethanol, with occasional shaking. After 48 hrs, the ethanolic extract was filtered through Whatmans filter paper. The plant material was then macerated again with fresh 50% ethanol and the filtrate obtained from the first and the second maceration was then combined and the solvent was recovered. After the recovery of alcohol, the extract was then evaporated to dryness and the yield was noted. The extract was refrigerated at 4°C for future use in experimental studies.

Phytochemical Screening
The extract obtained was subjected to qualitative tests for identification of different constituents like tannins, alkaloids, saponins, glycosides, terpenes, phenolics, flavonoids, carbohydrates, proteins and steroids, by using simple and standard qualitative methods described by Trease and Evans.

Pharmacological Study

Animals
Healthy albino rats of either sex weighing about 180-210 g were used during the study. The animals were procured from Central Animal House, IIM (Indian Institute of Integrative Medicine) Jammu and were housed in clean polypropylene cages. Before initiation of experiment, the rats were acclimatized for a period of 7 days. Standard environmental conditions such as temperature ranging from 18 to 32°C, relative humidity (70%) and 12 hrs dark/light cycle were maintained in the quarantine. All the animals were fed with rodent pellet diet (Ashirwad Industries) and water *ad libitum* under strict hygienic conditions. All procedures were performed in accordance to CPCSEA guidelines after approval from the Institutional Animal and Ethics Committee (IAEC) of the Department of Pharmaceutical Sciences, University of Kashmir [No. F-IAEC (Pharm.Sc) APPROVAL/2008/4 Dated Oct 23rd, 2008].

Induction of diabetes
Alloxan monohydrate was obtained from S.D Fine Chemical, Mumbai, India. All the other chemicals used were of analytical grade and were acquired from commercial sources. A single dose (120mg/kg, b.w, i.p) of alloxan monohydrate in sterile saline was used for the induction of diabetes in rats after overnight fasting. After one hour of alloxan administration, the animals were fed standard pellets and water *ad libitum*. After 5 days of alloxan administration, animals showing blood glucose levels above 250 mg/dl were selected for the study. Extract of EBJF was administered at three dose levels 50, 100 and 200 mg/kg.

Experimental design
Rats fasted overnight for 12 hrs were randomly divided into 6 groups of 6 rats per group. The various groups were:-
- **Group I**: Served as normal control and received only 0.2 ml of 2% aqueous gum acacia
- **Group II**: Served as diabetic control and received only alloxan monohydrate and 2% aqueous gum acacia.
- **Group III**: Alloxan monohydrate + Glibenclamide (10 mg/kg, p.o) and served as Standard Antidiabetic drug.
- **Group IV**: Alloxan monohydrate + 50% Ethanolic extract of EBJF (50 mg/kg, p.o)
- **Group V**: Alloxan monohydrate +50% Ethanolic extract of EBJF (100 mg/kg, p.o)
- **Group VI**: Alloxan monohydrate +50% Ethanolic extract of EBJF (200 mg/kg, p.o).

Results and Discussion

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Blood Glucose (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal control</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Diabetic control</td>
<td>260-300</td>
</tr>
<tr>
<td>III</td>
<td>Alloxan monohydrate + Glibenclamide</td>
<td>260-300</td>
</tr>
<tr>
<td>IV</td>
<td>Alloxan monohydrate + 50% Ethanolic extract</td>
<td>150-200</td>
</tr>
<tr>
<td>V</td>
<td>Alloxan monohydrate + 100% Ethanolic extract</td>
<td>150-200</td>
</tr>
<tr>
<td>VI</td>
<td>Alloxan monohydrate + 200% Ethanolic extract</td>
<td>150-200</td>
</tr>
</tbody>
</table>

Group VI showed a significant decrease in blood glucose level compared to diabetic control group. The extract was further tested for its hypoglycemic activity.

Conclusion

The present study indicates the potential of *Eriobotrya japonica* as a potential antidiabetic agent. Further studies are needed to establish its mechanism of action and to explore its potential as a therapeutic agent for diabetes.

References
5. CPCSEA guidelines: Available: <https://cpcsea.nic.in/>
The treatment (p.o) of the ethanolic extract was started the same day except normal control and diabetic control groups which received only 0.2 ml of 2% aqueous gum acacia for a period of 10 days. During this period, animals in all groups had free access to standard diet and water. Body weight and blood glucose levels were estimated on 1st, 4th, 7th and 10th day of the treatment.

Sample Collection
Blood samples were collected by pricking the tail from overnight fasted rats and blood glucose levels were estimated using One Touch Ultra glucose strips (Johnson & Johnson Ltd) on 1st, 4th, and 7th day.

Estimation of biochemical parameters
On day 10th, blood was collected from overnight fasted rats under ether anesthesia by cardiac puncture and was kept aside for 30 min for clotting. By centrifuging the same sample at 6000 rpm for 20 min, the serum was separated and was analyzed for blood glucose[14]: total cholesterol[15], triglycerides, HDL cholesterol[17] and LDL cholesterol.

Statistical analysis
All the values are expressed as mean ± SEM. The results were subjected to statistical analysis using one-way ANOVA followed by students t test. p<0.01 was considered highly significant.

RESULTS
Phytochemical analysis
Phytochemical analysis of the extract showed the presence of alkaloids, flavonoids, glycosides and carbohydrates (Table-1)

Antihyperglycemic study
Blood glucose levels showed a highly significant decrease in groups III, IV, V and VI (p<0.01) as compared to group II (Diabetic control). A highly significant increase in blood glucose levels was seen in diabetic group as compared to normal control group (p<0.01). (Table-2)

Effect of 50% ethanolic extract of Eriobotrya japonica fruits on biochemical parameters in alloxan induced diabetic rats
Serum total cholesterol levels showed a highly significant decrease in groups IV, V and group VI (p<0.01) as compared to diabetic control (Group II). Serum triglyceride levels showed a highly significant decrease in groups IV, V and group VI (p<0.01). HDL levels showed a non significant increase in groups III, IV, V and VI. LDL levels showed a significant decrease in groups IV, V and VI groups (Table-3)

Effect of 50% ethanolic extract of Eriobotrya japonica fruit on body weight in alloxan induced diabetic rats
Normal control animals were found to be stable in their body weight but diabetic rats showed significant reduction in body weight after 10 days. (p<0.01) Alloxan mediated body weight reduction was reversed by the ethanolic extract in dose dependant fashion 50 mg/kg, 100 mg/kg and 200 mg/kg b.w showed a highly significant increase in body weight (p<0.01). The effect of extract at 200 mg/kg on body weight of the animals was also found statistically significant. Results are shown (Table-4)

DISCUSSION
Pancreas is the primary organ involved in sensing the organism’s dietary and energetic states via glucose concentration in the blood and in response to elevated blood glucose, insulin is secreted. Alloxan is one of the usual substances used for the induction of diabetes mellitus apart from streptozotocin. It has a destructive effect of the beta cells of the pancreas. Alloxan causes a massive reduction in insulin release by the destruction of beta-cells of the islets of Langerhans thereby inducing hyperglycemia.
Insulin deficiency leads to various metabolic alterations in the animals viz increased blood glucose and increased lipid profile.

The results of the present study found that 50% ethanolic extract of Eriobotrya japonica reduce the glucose level in animals made diabetic with alloxan. Alloxan has been shown to induce free radical production and cause tissue injury. The pancreas is especially susceptible to the action of alloxan induced free radical damage.
In the present investigation 50% ethanolic extract of Eriobotrya japonica fruits demonstrated the significant anti-diabetic activity. The results from the present study also indicate that ethanolic extract can reduce the levels of serum lipids. The antihyperglycemic effect of the ethanolic extract may be due to the enhanced secretion of insulin from the beta cells of pancreas or may be due to increased tissue uptake of glucose by enhancement of insulin sensitivity.

Elevated plasma total cholesterol, triglycerides and LDL cholesterol are the major risk factors of cardiovascular diseases. Diabetic rats showed elevated plasma cholesterol, triglycerides and LDL cholesterol. Ethanolic extract in the dose of 200 mg/kg reduced the lipid profile along with the reduction in the blood glucose levels.
The literature reports reveal that flavonoids and tannins present in the plant extract known to possess antihyperglycemic and hypolipidemic activity. In the present investigation also the observed antihyperglycemic and hypolipidemic potential of test extract may be due to presence of similar phytoconstituents which was evident by preliminary phytochemical screening. Since many antihyperglycemic drugs do not correct dyslipidemia, the observed hypolipidemic effects of the plant extract in diabetic rats makes EBJF quite important in the management of diabetes. Since there is a strong well-established link between diabetes mellitus, dyslipidemia, obesity, hypertension and ischemic heart disease, effect of the plant extract on weight loss/gain needs to be explored on scientific base.

Table 1: Phytochemical Results of *Eriobotrya japonica* fruits

<table>
<thead>
<tr>
<th>S.No</th>
<th>Phytoconstituents</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tannins</td>
<td>_</td>
</tr>
<tr>
<td>2</td>
<td>Alkaloids</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Saponins</td>
<td>_</td>
</tr>
<tr>
<td>4</td>
<td>Glycosides</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Terpenes</td>
<td>_</td>
</tr>
<tr>
<td>6</td>
<td>Phenolics</td>
<td>_</td>
</tr>
<tr>
<td>7</td>
<td>Flavonoids</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Carbohydrates</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Proteins</td>
<td>_</td>
</tr>
<tr>
<td>10</td>
<td>Steroids</td>
<td>_</td>
</tr>
</tbody>
</table>

Table 2: Effect of 50% ethanolic extract of *Eriobotrya japonica* (EBJF) fruits on fasting blood glucose level (mg/dl) in alloxan induced diabetic rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>1<sup>st</sup> day</th>
<th>4<sup>th</sup> day</th>
<th>7<sup>th</sup> day</th>
<th>10<sup>th</sup> day</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal control 0.2 ml of 2% aqueous gum acacia</td>
<td>85.07±4.35</td>
<td>86.16±4.43</td>
<td>84.82±5.96</td>
<td>84.71±6.11</td>
</tr>
<tr>
<td>II</td>
<td>Diabetic control (Vehicle) 0.2 ml of 2% aqueous gum acacia</td>
<td>261.47±8.37</td>
<td>264.28±8.29</td>
<td>268.03±8.48</td>
<td>271.33±8.18***</td>
</tr>
<tr>
<td>III</td>
<td>Alloxan monohydrate + glibenclamide (10 mg/kg)</td>
<td>200.37±5.25</td>
<td>141.18±2.43</td>
<td>124.52±2.00</td>
<td>114.84±3.21***</td>
</tr>
<tr>
<td>IV</td>
<td>Alloxan monohydrate + 50% Ethanol extract (EBJF,50 mg/kg)</td>
<td>201.17±4.85</td>
<td>159.48±2.68</td>
<td>158.76±2.81</td>
<td>157.04±3.09***</td>
</tr>
<tr>
<td>V</td>
<td>Alloxan monohydrate + 50% Ethanol extract (EBJF,100 mg/kg)</td>
<td>201.17±4.85</td>
<td>146.43±2.46</td>
<td>135.44±2.72</td>
<td>128.64±1.61***</td>
</tr>
<tr>
<td>VI</td>
<td>Alloxan monohydrate + 50% Ethanol extract (EBJF,200 mg/kg)</td>
<td>204.27±4.25</td>
<td>144.65±1.53</td>
<td>118.35±3.42</td>
<td>82.82±5.53***</td>
</tr>
</tbody>
</table>

Animal: Albino Rats
Extract: p.o.
Values are Mean ±S.E.M n=6; except in Group V where n=5
***P<0.01 highly significant
Groups I,II,III,IV, V vs Diabetic Control (Group II) and Group I vs Group II on 10th day

Fig. 1: Effect of 50% ethanolic extract of *Eriobotrya japonica* (EBJF) fruits on fasting blood glucose level (mg/dl) in alloxan induced diabetic rats after 10 days of dosing. Each bar represents the mean ± SEM
Table 3: Effect of 50% ethanolic extract of *Eriobotrya japonica* fruits on lipid profile in alloxan induced diabetic rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Serum total Cholesterol mg/dl</th>
<th>Serum triglyceride mg/dl</th>
<th>Serum HDL Cholesterol mg/dl</th>
<th>Serum LDL Cholesterol mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal control 0.2 ml of 2% aqueous gum acacia</td>
<td>85.25±8.51</td>
<td>80.71±9.38</td>
<td>24.54±6.49</td>
<td>52.03±3.21</td>
</tr>
<tr>
<td>II</td>
<td>Diabetic control 0.2 ml of 2% aqueous gum acacia</td>
<td>218.15±23.79</td>
<td>194.56±14.99</td>
<td>21.11±1.45</td>
<td>89.59±13.82</td>
</tr>
<tr>
<td>III</td>
<td>(Alloxan monohydrate +standard drug glibenclamide 10 mg/kg)</td>
<td>206.35±6.11*</td>
<td>184.30±9.68*</td>
<td>29.03±3.16*</td>
<td>85.39±7.24*</td>
</tr>
<tr>
<td>IV</td>
<td>Alloxan monohydrate + Ethanolic extract (EBJF,50 mg/kg)</td>
<td>159.4±13.65**</td>
<td>158.53±13.66**</td>
<td>29.94±4.92*</td>
<td>103.21±10.67**</td>
</tr>
<tr>
<td>V</td>
<td>Alloxan monohydrate +Ethanolic extract (EBJF,100 mg/kg)</td>
<td>133.17±19.41**</td>
<td>111.21±12.52**</td>
<td>30.54±3.23*</td>
<td>60.54±4.99**</td>
</tr>
<tr>
<td>VI</td>
<td>Alloxan monohydrate +Ethanolic extract (EBJF,200 mg/kg)</td>
<td>98.15±4.78***</td>
<td>86.13±11.49***</td>
<td>32.73±4.04*</td>
<td>60.78±6.68**</td>
</tr>
</tbody>
</table>

Animal: Albino Rats
Extract: p.o.
Alloxan: 120 mg/kg i.p
Value are Mean ±S.E.M: n=6 except in Group V where n=5
*p<0.05 non significant
**p<0.01 significant
***p<0.001 highly significant; Groups III, IV, V, VI vs Diabetic Control (Group II) and Group I vs Group II on 10th day
Table 4: Effect of 50% ethanolic extract of Eriobotrya japonica (EBJF) fruits on average body weight (g) in alloxan induced diabetic rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Average Body weight of the animal (g)</th>
<th>1st day</th>
<th>4th day</th>
<th>7th day</th>
<th>10th day</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal control 0.2 ml of 2% aqueous gum acacia</td>
<td>228.85±6.03</td>
<td>229.88±6.66</td>
<td>233.00±7.07</td>
<td>222.05±4.75</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Diabetic control 0.2 ml of 2% aqueous gum acacia</td>
<td>180.58±3.66</td>
<td>163.86±2.08</td>
<td>152.21±3.12</td>
<td>124.76±2.35</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Alloxan monohydrate + standard drug glibenclamide (10 mg/kg)</td>
<td>183.83±3.34</td>
<td>173.85±3.37</td>
<td>152.98±4.44</td>
<td>137.50±3.54***</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Alloxan monohydrate + Ethanolic extract (EBJF, 50 mg/kg)</td>
<td>180.53±2.83</td>
<td>177.23±1.64</td>
<td>171.36±2.73</td>
<td>171.47±2.74***</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Alloxan monohydrate + Ethanolic extract (EBJF, 100 mg/kg)</td>
<td>188.58±3.74</td>
<td>185.48±3.24</td>
<td>179.58±3.41</td>
<td>172.62±4.05***</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Alloxan monohydrate + Ethanolic extract (EBJF, 200 mg/kg)</td>
<td>193.88±3.36</td>
<td>184.54±4.32</td>
<td>176.42±3.71</td>
<td>176.41±3.52***</td>
<td></td>
</tr>
</tbody>
</table>

Animal: Albino Rats
Alloxan: 120 mg/kg, i.p.
Extract: p.o.
Value are Mean ± S.E.M: n=6 except in Group V where n=5
*p > 0.05 non significant
**p < 0.05 significant
***P < 0.01 highly significant
Groups III, IV, V, VI vs Diabetic Control (Group II) and Group I vs Group II on 10th day

Fig. 3: Effect of 50% ethanolic extract of Eriobotrya japonica fruits on Average Body Weight (g) in alloxan induced diabetic rats after 10 days of dosing.
Each data column represents the mean ± SEM
CONCLUSION
From the study, it can be concluded that the 50% ethanolic extract of Eriobotrya japonica fruit has beneficial effects on blood glucose levels as well as improving hyperlipidemia and other metabolic aberrations. Further pharmacological and biochemical investigations will clearly elucidate the mechanism of action and will be helpful in projecting this plant as an therapeutic target in diabetics research.

ACKNOWLEDGEMENT
We are highly thankful to Sri Krishna Drugs Ltd., C-4 Industrial Area Uppal, Hyderabad for providing a free gift pure sample of Glibenclamide which was used as standard anti diabetic drug and also to University Grants Commission for financial assistance. The facilities provided by the Department of Pharmaceutical Sciences University of Kashmir for carrying out this work also need appreciation.

REFERENCES
18. Friedewald WT, Levy RI, Frednickson DS. Estimation of the concentration of
